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ABSTRACT

Human limb segment angle tracking requires a system which can track through all
orientations. The magjor problem addressed by this research was to develop a rea time
inertial motion tracking system based on quaternions to overcome the singularities of
Euler angle filters.

This work involves clarification of the theory behind quaternion attitude
estimation and development of a g/stem capable of determining the orientation of an
object in world coordinates. System sensors were built using miniature accelerometers,
rate sensors, and magnetometers. The software system was designed by using Unified
Modeling Language (UML) with object oriented design techniques. The actud
implementation created areal time orientation tracking system.

The system was tested with dynamic tilt table experiments. Test results showed
that the quaternion attitude estimation filter system can track human limb segments in

real time within 1 degree of accuracy in any orientation and with a 55 Hz. update rate.
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l. INTRODUCTION

A. MOTIVATION

For many years, computer scientists have tried to create redlistic virtual
environments (VE) for simulation, training, evaluation, data visualization, computer
aided design, tele-operation, tele-presence, robotics and entertainment. During this
period, computer performance increased rapidly in both hardware and software
[HENA97]. Many techniques and devices have been discovered and introduced to
interface computers and humans. These advances are needed to deal with the well-
known “human machine interaction problem” [HENA97]. Special interaction devices are
needed to achieve the goa of total immersion of humans into virtual environments
[HENA97]. The main thrust of research in this area has been directed toward producing
new and improved sensors for tracking objects and humans.

There are currently five fundamental tracking technologies; namely, mechanical,
electromagnetic, acoustic, optical and inertial [DURL95]. Very recently, due to advances
in component technology, inertial tracking systems have become more promising than
other tracking technologies [SKOP96]. Inertial tracking systems use a combination of
angular rate, accelerometer and magnetic sensors. Filter algorithms combine these sensor
readings to obtain limb segment orientations. Such trackers are free of most of the
problems of other tracking systems.

B. PROBLEM STATEMENT
Several methods exist for describing the orientation of an object. The most

widely used method is to use Euler angles to describe attitude. However, tracking



systems using Euler angles are not capable of tracking objects in all orientations due to
gimbal lock singularities [BACH96, SKOP96].

A quaternion based attitude estimation filter has been proposed to overcome the
singularities and the divide by zero errors encountered when using Euler angles to
represent orientations [MCGH96]. The theory behind the quaternion attitude estimation
filter has been proved to be correct and a ssimulation program has been written in ANS|
Common Lisp using only static sensor readings [HENA97]. The goal of this thesisisto
develop a real-time quaternion-based orientation estimation filter in a PC ewironment,
guantitatively test this system with atilt table, and qualitatively test it when mounted on a
human limb segment [USTA99]. Before the real-time software development, white noise
effects on this filter are examined with a simulation program. In this thesis, the Unified
Modeling Language (UML) [DOUG98] is used for software development, and the C++
programming language for system implementation.

C. ORGANIZATION

Chapter Il of this thesis surveys existing tracking technology and related work in
the area of inertial tracking systems. Chapter 111 discusses representations of rigid body
orientation with Euler angles and quaternions, and presents a comparison between Euler
angles and quaternions. Chapter |V presents the detailed mathematical theory behind the
guaternion attitude estimation filter, white noise effects on the filter, and the derivation of
the gain constant in the filtering process. Chapter V explains the hardware configuration
of the system. Chapter VI presents the software design and development process.
Chapter VII presents the test results of this real time implementation of the filter with a
tilt table. The last chapter, Chapter VI, presents the conclusions of this research. It

2



introduces the possibility of using this system as an inertia tracking system in the NPS
Autonomous Underwater Vehicle (AUV) project [YUN97] and the body suit project
[ZYDA97]. Recommendations are made for future work and ways to improve the

guaternion attitude estimation filter.






Il.  BACKGROUND

A. INTRODUCTION

A basic requirement in virtual environments (VE) is the tracking of objects,
especially humans. Tracking of humans creates a convenient human machine interface to
the virtua environment. If the user is to interact in a natural way with a virtua
environment, then the use of standard 2D devices becomes unacceptable [FREY 96]. 3D
user interfaces in a virtual environment require the use of devices that are specia to that
environment. There are many 3D user interface systems available; however, they all
have unique problems in real-time applications. This chapter presents current motion
tracking devices, their usage in virtua environments, and their effectiveness when
applied to real-time human motion tracking.
B. REQUIREMENTSFOR SPATIAL TRACKERS

Tracking devices alow avirtua reality system to display the x, y and z position and
the yaw, pitch and roll orientation of a tracked object or a human body part. The primary
purpose of any tracking device is to provide an intuitive interface between human and
machine [HENA97]. Human machine interfaces include all the devices used in a virtual
environment system to present information to the human or to sense the actions or
responses of the human [DURL95]. Before selecting an appropriate tracking device, it is
necessary to determine the characteristics and behaviors of the tracked objects.

For normal arm movements during reaching, a fast motion is accomplished in
about 0.5 seconds, wrist tangential velocities are about 3 m/s and the accelerations are
about 56 g. For the fastest arm motion such as throwing a baseball, good pitchers

release the ball at 37 m/s and accelerate their hands at more than 25 g. Motion
5



bandwidths of normal arm movements are around 2 Hz; the fastest hand motions are at
around 5-6 Hz. The frequency content of normal arm motion can be defined as 5 Hz with
asampling rate of roughly 100 Hz [DURL95].

Head movements can be as fast as 1000 deg/s in yaw. Usua peak velocities are
about 600 deg/s for yaw and 300 deg/s for pitch ard roll. Tracker-to- host reporting rates
must be at least 30 Hz. Delays of 60 ms or more between head motion and visua
feedback are known to impair adaptation and the illusion of presence. Much smaller
delays may cause simulator sickness [DURL95].

C. MOTION TRACKER PERFORMANCE

Severa different tracking devices and technologies have been developed and
applied to virtual environment applications. [MEYE92, SKOP96, HENA97] suggest
some key measures by which tracking systems may be evauated, namely;

resolution and accuracy
responsiveness
robustness

registration

sociability

Resolution can be defined as the smallest change, which can be detected by a
given tracking system [HENA97]. Accuracy is the sensor error range. The precision
with which actions can be executed in the virtual world depends on the resolution and
accuracy of a tracking device used. The range of a tracking device is the maximum

distance between the sensor and source up to which the position and the orientation can



be measured with a gecified error [BARA93]. Accuracy would also include sensor drift;
i.e., the tendency of output to change without any change in input [SKOP96].
Responsiveness is a measure of the quickness with which new information is
provided. It is determined by sampling rate, data rate, update rate, and latency
[SKOP96]. Sampling rate is smply how often the sensor is checked for new data. Data
rate is defined as the number of computed data points per second that the system can
provide. Many systems will implement a much higher sampling rate than data rate in
order to assure that new data is not missed. Filtering the sensor data takes time and will
hinder real time updates. The rate at which the system can provide updated position and
orientation data to the host computer is the update rate. Latency is perhaps the most
important characteristic of responsiveness. The usefulness of tracking devices in virtual
environments depends to a large degree on whether the computer can track the
movements of the user fast erough to keep the virtual world synchronized with the user’s
actions. This ability is determined by the lag of the signal, and the sensor’s update rate.
The signal lag is the delay in time between a change of the position and orientation of the
target being tracked and the report of the change to the computer. Lags above 50 ms are
perceptible to the user and affect human performance. Typica update rates are between
30 and 60 updates per second [BARA93]. A system’'s lag is sometimes referred to as its
latency and is one of the most important specifications of a tracking system [HENA97].
Robustness is a measure of the tracker’s effectiveness in the presence of noise or
other signal interference in the operating environment [SKOP96]. Types of interference
include physical, metallic, electronic and acoustic [HENA97]. Depending on the
technology used, sensors may be sensitive to metal objects, radiation from display

7



monitors, and various noise sources or objects coming between source and sensor. This
interference can limit the effectiveness of tracking devices [BARA93].

Registration is the correspondence between a unit's actua position and
orientation and its reported position and orientation over the domain of the working
volume [SKOP96].

Finally, sociability describes a system’s maximum range of operation, its working
volume, and the ability to track multiple targets within that operating range. The working
volume is that volume in which the tracker can accurately report position and/or
orientation information [MEYE92, HENA97]. In addition to considering these
performance factors, one might consider availability, cost and ease of use before actually
selecting a tracking system [ SKOP96].

D. TYPESOF MOTION TRACKERS

Most currently used tracking devices are active; that is, a generated source is
attached to the object to be tracked or sensed by devices on the tracked object. In passive
tracking, the target is monitored from a distance by one or several cameras [BARA93].
Current tracking devices are based on electromagnetic, acoustic, mechanical, optical and
InfraRed (IR) technologies.

1 Mechanical Tracking Devices

Mechanical trackers measure changes in position and orientation by using jointed
linkages directly connected to a point of reference. For body motion tracking, the point
of reference can either be another part of the human body or a fixed surface near the
human [SKOP96]. These trackers can be separated into two basic types, body based (ex-
oskeletal, goniometer systems) and ground-based systems [DURL95]. Body based

8



systems are used to track the user’ s joint angles or end—effector positions relative to some
other part of the body. Ground-based systems are attached to some surface near the user.
Generally, the user grasps an implement whose position and orientation are tracked
[SKOP96].

Since no external source is required, these sensors are not susceptible to external
interference [HENA97], and are much less sensitive to their immediate environment than,
say, electromagnetic trackers [HAND93]. The lag for mechanical trackers is very short,
less than 5 ms, their update rate is fairly high, 300 updates per second, and they are very
accurate [BARA93]. The physical linkages are well suited for providing haptic
responses. Haptic responses are force feedback cues that enable the user to experience
simulated exertion forces during a virtual environment simulation. These cues further
enhance the realism of the environment and the immersion of the user [HENA97].

The fact that mechanical trackers are a system of physical linkages attached to the
body or constantly held makes them cumbersome. The main disadvantage of mechanical
trackers is that the user’s motion is constrained by mechanical devices. These devices
have a restrictive working volume and are usualy not portable. They require a
designated area for their use [HENA97].

Since they have moving parts, mechanical trackers can wear out after a period of
time [HAND93]. Mechanical trackers tend to be accurate, responsive, robust and
inexpensive, but they have poor sociability [MEY E92, SKOP96] and can be difficult and
time consuming to calibrate [DURL95, PRAT94, SKOP96]. Applications requiring a
limited range of motion and where user immobility is not a problem are best suited for
this type of tracking system [MEY E92, HENA97].

9



2. Electromagnetic Tracking Devices

Electromagnetic trackers utilize artificially generated signals from the
electromagnetic spectrum. In this case, the electromagnetic spectrum is defined in a
narrow sense to mean radio and microwave frequencies [ SKOP96].

An electromagnetic tracker comprises a transmitter and areceiver. A fluctuating
magnetic field generated in the three orthogonal coils of a transmitter is picked up by
three corresponding coils in the receiver. The variations in the received signal can be
used to calculate the relative position and orientation of the receiver and transmitter. The
fluctuating magnetic field may be Alternating Current or Direct Current [HAND93].

An alternative method recently proposed involves use of spread-spectrum ranging
techniques [BIBL95, SKOP96]. This technique uses the measured time of flight of
electromagnetic pulses to a receiver to determine range from a set of fixed transmitters.
The concept is similar to that of the Global Positioning System (GPS). A minimum of
three transmitters would be required to determine position via triangulation. A fourth
transmitter would be required to ensure time can be accurately computed by the receiver.
Transmitted signals would all occupy the same wide bandwidth and could utilize code
division multiple access (CDMA) to preclude mutual interference [SKOP96].

Electromagnetic trackers have been commercially available for some time and are
relatively inexpensive and easy to use [SKOP96]. These devices are generaly very
flexible due to the small size of the receiver (smaller than a 1’ cube). Although the
working volume is generally not very large, a few feet, it is usualy possible to arrange
various combinations of time-multiplexed transmitters and receivers to cover more space
and track more objects [HAND93]. These systems tend to have good accuracy in a small

10



working space, with accuracy trailing off as distances from the transmitter increase
[SKOP96].

Electromagnetic trackers suffer from several sources of error. Electromagnetic
interference (EMI) from devices such as radios or display units can cause erroneous
readings. Large objects made of ferrous metals can interfere with the electromagnetic
field, again causing inaccuracies [HAND93].

Robustness is adversely effected by sensitivity to ferromagnetic objects in the
vicinity, with aternating current based trackers being more suspectible than direct current
based trackers. Alternating current systems tend to generate eddy currents in metallic
objects, which then cause their own electromagnetic interference [SKOP9I6].

Adding power to the transmitter to increase the working volume can increase
noise. Both AC and DC systems are adversely impacted by noise from power sources.
Responsiveness is poor compared to other methods [ SKOP96].

Latency is a serious problem with electromagnetic trackers. Up until recently the
typical latency for an electromagnetic device was around 100 ms. This is mostly due to
the filtering being performed on the data to remove noise. Newer versions of these
devices have attempted to address this problem [HAND93]. Sociability is best in an
environment without ferromagnetic occlusions, but is limited due to a small range of
operation. Still, these systenms can be very effective at shorter ranges [SKOP96].
Electromagnetic tracking works best in applications which require a limited working

environment that is free of electromagnetic interference.
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3. Acoustic Tracking Devices

Acoustic devices are sometimes called “ultrasonic trackers’. Acoustic tracking is
a farly smple and well-understood technique [HAND93]. Such devices use high
frequency ultrasonic sound waves for measuring the position and orientation of the target
object by either phase-coherence tracking or time-of-flight (TOF) tracking [BARA93].

Phase coherence tracking works by measuring the difference in phase between
sound waves emitted by a transmitter on the target and those emitted by a transmitter at a
known reference point. Time-of-flight works by measuring the amount of time that it
takes for sound emitted by transmitters on the target to reach sensors located at fixed
positions in the environment. The transmitters emit sound at known times and only one
transmitter is active at atime [BARA93]. One transmitter and three sensors are required
for 3 DOF while three transmitters and three sensors are necessary for full 6 DOF
tracking [HAND93].

Simple acoustic tracking devices can be constructed at low cost. They offer better
range of operation than magnetic systems but can suffer severe effects from shadowing
that can occur when tracked body parts are blocked by other objects [SKOP96]. Objects
that move farther than half a wavelength in one update period will induce tracking error.
The speed of sound in air varies with air temperature, pressure and humidity. Hence,
calculations of distance may be incorrect due to environmental conditions unless steps are
taken to account for these [HAND93]. Time-of-flight trackers typically suffer from alow
update rate, brought about by the low speed of sound in air [BARA93]. Another
common problem is that echoes of the sound signal will be reflected from acoustically
“hard” surfaces, such as office walls, causing reception of “ghost” pulses at the sensor

12



and interference with other transmitted pulses [HAND93]. Time-of-flight tracking
devices are vulnerable to spurious noise sources at any range [HENA97].

Phase-coherent systems enjoy many benefits over time-of-flight systems due to
much higher data rates [MEYE92]. If the range is small, both systems offer good
accuracy, responsiveness, and robustness. As range increases, data rates for time-of-
flight systems decreases, causing responsiveness and robustness to decrease. Sociability
of phase-coherent systems is better than that of time-of-flight systems due to larger
working volumes [MEY E92].

4, Optical Tracking Devices

There are a variety of approaches to optical sensing for position tracking and
mapping. Distance may be measured by triangulation, by time-of-flight or by
interferometry. The passive light of the environment may be employed, structured light
may be projected, light may be pulsed, or active or passive markers may be placed on a
moving body. The different types of optical trackers can be broken into five categories;
passive stereo vision systems, marker systems, structured light systems, laser radar
systems, and laser interferometric systems [DURL95].

Passive stereo vision systems employ ambient light and square-array charge-
coupled device (CCD) cameras [DURL95]. Multiple images from cameras with varying
viewpoints are compared. Triangulation is then used to determine position [SKOP96].
An essential issue is to solve the correspondence problem of relating the same points in
two different images. Passive stereo vision systems are unlikely to be useful in virtua
environment in the near term, as robustness and accuracy are not yet comparable to active
ranging systems [DURL95].
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The stereo correspondence problem is solved in marker systems because a few,
easily identifiable fiducial points are tracked on a moving body. To create very bright
gpots on the image a number of infrared light emitting diodes (IRED) are used. For
detection, 1cm? position sensing detectors (PSD), also called lateral effect photodiodes,
are used. Multiple markers can be tracked to yield orientation and to follow multiple
bodies simultaneously. Workspace volume is about 1m3. A fundamental problem with
the use of PSD is reflection of IRED light from environmental surfaces [DURL95].

Structured light systems use a ray, plane of light, or a laser, to sweep across a
scene. At each position of the plane, a light stripe is created, which is sensed by a two
dimensional camera. The intersection of the known plare and the line of sight from the
camera determines the three-dimensional coordinates. Another common method uses
laser spot scanning of the scene. In this method either al or only portions of the scene
may be scanned for data[DURL95].

Two of the most prevaent techniques that use lasers include laser radar and laser
interferometry techniques. Laser radar works in the same way as acoustic ranging
techniques, except that much higher data rates are possible. Techniques include both
time-of-flight and phese shift. By scanning the entire scene, a three dimensional picture
of the scene can be generated. Laser radar techniques are more appropriate for longer
distances than laser techniques that use triangulation [DURL95].

Laser interferometry, uses a steered laser beam to track a reflector on the object
being tracked. Phase-shift ranging and angular information from the steered system are
used to determine position. An alternate method uses several lasers to track the reflector
from different fixed positions to obtain range information. In this case, the intersection of
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spheres whose radii are determined from the range information determines the location of
the point being tracked. The problem with these techniques is that they provide only
incremental displacement data and loss of signal via shadowing can be cause for re-
calibration [DURL95].

5. Inertial Tracking Devices

Inertial tracking systems use a combination of linear acceleration, angular rate and
magnetic sensors to determine rigid body orientation. Angular orientation is determined
by integrating the output from the angular rate sensors. Angular rate sensors operate by
using the differential combination of the outputs of two vibrating linear accelerometers.
Angular rate sensor output has an error called drift. Drift is defined as the tendency of
bias errors, inherent to the sensor, to cause increasing orientation estimation errors over
time. Thisfundamental limitation makes angular rate sensors only a relatively short-term
solution to determining a rigid body’s spatial orientation [HENA97].

In order to compensate for the long-term errors introduced by the use of angular
rate sensors, inertial systems utilize linear acceleration sensors called accelerometers.
Accelerometers measure the gravity vector, relative to the object being tracked as well as
the forced linear accelerations of the attached rigid body.

The third component of inertial systems is the magnetometer. The magnetometer
is sensitive to the Earth’s magnetic field and can serse rotations about the local vertical
axis. Magnetometers must be used to correct drift errors in the horizontal plane
[HENAO7].

Originally these devices were used in guidance systems for airplanes and missiles
and as such were cumbersome [HAND93]. Severa companies have begun
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manufacturing small devices, but a complete system is not commercially available yet for
body tracking. These systems hold much promise for future application to the body
tracking problem. Larger systems have shown that accuracy, resolution, response,
robustness and registration requirements for human body tracking can be met by this
technology. Although the technology is currently expensive, it is expected that costs will
come down as devices are marketed. The greatest benefit of this type of system is its
sociability. Whereas electromagnetic, acoustic and optic devices all require emissions
from a source to track objects, inertial tracking systems are sourceless. This precludes
the inevitable disastrous effects of occlusions and noise [SKOP96]. Pureinertial systems
are capable of tracking only orientation. A hybrid system providing 3D location of one
reference point on the body would be required to fully solve the human body tracking
problem.

E. RELATED WORK

Various methods exist for tracking the rotations of an object and representing
these rotations in a virtual environment. Orientation filters based on Euler Angles are not
capable of tracking orientations through the vertical, due to the gimbal lock singularities
and divide by zero errors in equations involving trigonometric functions [BACH97B].

A specific example of an orientation filter based on Euler Anglesis the navigation
filter used in the NPS AUV project [MCGH95, BACH96]. The filter incorporates inputs
from an onboard Inertial Measuring Unit (IMU), a compass, and a water-speed sensor.
Intermittent GPS fixes periodically provide accurate real-time navigational data
[BACH96, HENA97]. A schematic representation of the attitude estimation part of the
SANS navigation filter is shown in Figure 1.
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Figure 1: Euler Angle Attitude Filter [HENA97]
The SANS filter experiences singularities in two separate places. The

accelerometer estimate of the roll angle and the angular rates of roll and azimuth become
undefined at elevation angles of £90 degrees.

In past research, [SKOP96] Euler Angles were used to track and to represent the
human upper body. SKOP96 was forced to employ error-checking programming
techniques in the software to avoid the singularities of an Euler Angle based orientation
filter. He concluded that current electromagnetic trackers lack sufficient accuracy and
registration to enable their use as a true six degree of freedom (DOF) tracker in human
body tracking applications and called for the investigation of new tracking technologies
to support the insertion of dismounted infantry into a virtual environment [ZY DA97].

In order to avoid singularities in human body tracking or in a navigation system,
an aternative representation is needed for orientation filters. The quaternion attitude
estimation filter was proposed by [MCGH96] as an aternative representation and

improvement to the filters based on Euler Angles.
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HENA97 developed the software necessary to support simulation of a quaternion
filter using inertial sensors. His software was written in ANSI Common Lisp. The filter
was tested with a computer simulated inertial tracker and used only static sensor readings.
This research showed that the theory behind the quaternion atitude estimation filter was
sound. Reduced computational complexity was achieved since the quaternion filter uses
no trigonometric functions.

F. SUMMARY

Excepting inertial and spread-spectrum systems, the systems described in this
chapter are currently available [SKOP96]. Mechanical techniques for tracking the upper
body have been implemented and have been shown to be cumbersome and difficult to
use. Acoustic trackers can provide potentially excellent accuracy and resolution together
with a greater range of operation than magnetic trackers. Hybrid spread-spectrum
ranging and inertial tracking systems have potentia for providing increases in accuracy,
response and range of operation over systems available now [SKOP96].

This chapter presented a brief overview of current tracking technologies and past
research into body tracking systems and orientation filters. More detailed information
about tracking systems can be found in [DURL95]. The next chapter presents
representations of rigid body motion with Euler angles and quaternions, and a

comparison between Euler angles and quaternions.
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1. RIGID BODY ROTATION

A. INTRODUCTION

Computer animation and robotics both involve manipulating, rotating and
transating moving objects in a 3D environment. Several different systems are used to
describe positions and motions in space. These include Euler angles and quaternions.
Each of these has particular advantages and disadvantages. This chapter will provide the
basic information about Euler Angles and Quaternions,
B. EULER METHOD

The most popular method for describing orientation in Earth coordinates is the
Euler Method. Using a sequence of three angles, the Euler Method provides an intuitive
description of attitude. Although eleven other possibilities exist, these angles typically
consist of the familiar azimuth angle,y , the elevation angle, q, and the roll angle,] ,
[CRAI89]. Euler angles specify three successive rotations to bring the Earth coordinates
into alignment with the body coordinates [COOK92].

1. Rigid Body Rotation with Euler Angles

Euler's theorem states that any numbers of rotations of a rigid body about an
Earth-fixed axis are equivalent to a single rotation about a single Earth-fixed axis. If all
rotations are about the north(x), east(y) and down(z) axes, as depicted in Figure 2, the

angles are called Euler Angles.
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Figure 2: Right Handed Earth Coordinate Axis
As stated previoudly, there are twelve sets of rotations. The standard “azimuth,

elevation, and roll” set is represented by the three rotation matrices given in Eqg. 3.1. R
represents a rotation about the x axis [CRAI89]. Similarly for R, and R,.

R=RzRy Ry (Eq. 3.1)

These names above and the symbols y ,q, andj are reserved for the Euler angle

set. The sign of arotation is determined using the right hand rule. The ranges for the

rotation angles are

(Eq. 3.2
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The x-axis rotation matrix (roll) is given by [CRAI89]

& 0 O
Re()=¢D cog -sin
@ sn ooy

(Eq. 3.3)

e em enty eny end

The y-axis rotation matrix (elevation, pitch) is given by
&osq O sing U
é a
Ry@=¢0 1 0 g (Eq. 3.4)
gsing 0 cosg H
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The zaxis rotation matrix (azimuth, heading, yaw) is given by

€osy -sny 0U
é. a

R,y )=giny cosy Oy (Eq. 3.5)
g0 o0 14

In general, every rotation matrix is a 3x3 matrix, but to make both translation and
rotation calculations using matrices, similar 4x4 homogeneous matrices are used. A

homogeneous rotation matrix in graphics, takes the form [FOLE97]
u (Eq. 3.6)

Any rotation matrix can be put into this general form. Rotations of an object are
made by multiplying these matrices with the homogenous coordinates of the object. In
composing the results of successive rotations by matrix multiplication, the first rotation is
associated with the right-most matrix. Depending on the order of the rotations, there
exists more than one way to describe a given orientation.

Any rotation can be calculated by multiplying these individua matrices in the
right order. For example a roll rotation, followed by an elevation and followed by a
change in azimuth would be calculated by multiplying the matrices from right to left

R=R; Ry Ry (Eq. 3.7)
resulting in

€osy cosg  sinj singcosy -cog siny  sinj siny +cog cosysing U
R=gSiny cosq snj singsiny +cosi cosy cog singsiny - cosy sinj ﬂ (Eq.3.8)
g -sing cosqsinj co§ Cosq H
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Figure 3. Body Coordinate Axes
2. Body Ratesto Euler Rates

To rotate a body, its Rotational Velocity around the nose vector (n), the side
vector (s) and the approach or belly vector (@) can be calculated, Figure 3. This rotational

velocity can be presented in Earth coordinates as

-
Ey = [WX Wy WZ] (Eq. 3.9)
and in body coordinates
T
Bw = [p q r] (Eg. 3.10)
where p is roll rate, q is pitch rate and r is yaw rate. These words and symbols are

reserved for body rotations [MCGH93]. Euler rates are in Earth coordinates and p, g, and

r are in body coordinates. Thus, the following must be noted.

Roll rate, p ?roll Euler anglerate, |-

Pitch rate, q ? elevation Euler angle rate, q

Yaw rate, r ? azimuth Euler angle rate, y

22



The rotation rate in Earth coordinates is;

& u éu gu
é u é.u é.u
Ew =& gt Rzt RzRy @y
& H &Y &4

Evidently, the rotation in Body coordinates is,

-1 T
By =[RZRyRX Ew =[RZRyRX] Ew

— TpT _p-lp -1p -1
=R/ R/R,'E, =R 'R, R, 1,

Since
oy O sing U
R(R,T = %nj sinq co§  sinj cosq ﬂ
gog sing -sinj  cog cosq H

it follows that

Likewise,

(Eq. 3.11)

(Eq. 3.12)

(Eq. 3.13)

(Eq. 3.14)

(Eq. 3.15)

(Eq. 3.16)

(Eq. 3.17)

(Eq. 3.18)



Thus

esmq U eo u  éu

ua .éu
Bw yesmj cosqu+qéc051 at) éou:(qu)T

foosj cosalf & sinj f &Y

€ -ysng+j é
g y snq+j epu

u u
Bw = &Y sinj cosq+qcosj 3 gqﬂ
3/005] cosq - qsin; H &
In component form, thisis
p=j -y sinq
g =Yy sinj cosq + (Ccos;
r =y cosj cosq- gsinj
Solving these equationsin terms of p, g and r, results in
q=qoosj - rsinj
y =rsecqcosj +qgsecqsnj
] = p+rtanqoosj +qtanqsinj

Equivaently, in matrix form;

§ U €& tanqsinj tanqcog U €pu
é.u_é : . Gé d
Gu=d w8 sga
8H 8 secgsnj  secqcog HE H

(Eq. 3.19)

(Eq. 3.20)

(Eq. 3.21)
(Eq. 3.22)

(Eq. 3.23)

(Eq. 3.24)

(Eq. 3.25)

(Eq. 3.26)

(Eq. 3.27)

The equations from Eg. 3.21 through Eq. 3.27, dso known as the gimbal rate

equations and are quite commonly used in animation and ssimulation [COOK92]. The

matrix in Eq. 3.27 isaso referred to asthe T matrix [FRANG9].
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3. Problems with Euler Angles
The first problem results in divide-by-zero errors in equations involving

trigonometric functions. Whenever cosq =0 (q =+ p/2)

ang=ad seeq= —— (Eq. 3.28)
q g q

are undefined.

A second problem exists when pitch, q, goes through the vertical;

(Eq. 3.29)

o
Il
I+

N | O

At that point, the roll and azimuth axes become coincidental. Thisis called gimbal lock
singularity. “Gimbal lock” is aterm derived from a mechanical problem that arises in the
gimbal mechanism used to support a compass or gyroscope. The fina rotation matrix
depends on the order of multiplication. It is sometimes the case that the rotation in one
axis will be mapped onto another rotation axis. Even worse, it may become impossible to
rotate an object in a desired axis [WATT98].

Both these problems occur because Euler angles ignore the interaction of the
rotations about separate axes. In truth, these rotations are not independent of each other
[WATTOS].

The only solution to going through a vertical orientation is to fake; i.e., fix the
code so a division-by-zero error doesn't occur. These fixes usualy prove less than
satisfactory and make it impossible to track an object through al possible orientations

[COOK92].
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C. QUATERNION METHOD

An alternate method of describing orientation that has been gaining popularity in
the graphics community is the use of unit quaternions. It is not a new method
[COOK92]; quaternions have been around for more than 150 years.

The quaternion is a concept related to three dimensional vectors, but which allows
the representation of operations such as rotations not directly representable with vectors
[PERV82]. A quaternion is a four dimensiona vector with an associated quaternion
product. It is conventiona to interpret a quaternion as a generalization of a complex
number with a real number part and a vector part.

1 Quaternion Basics

The basis for quaternions are three imaginary “flags’ i, j and k where [MCCA90]

i2=j%=k?=ijk=-1 (Eq. 3.30)
ij=-ji=k (Eq. 3.31)
jk=-K =i (Eq. 3.32)
ki =-ik = (Eq. 3.33)

There are several equivalent ways of writing quaternions in terms of their four
components; one way is the Standard Quadrinomia Form [PERV82]:
Q={a +bi+g +dka,b,g,d rea} (Eq. 3.34)
There are three other commonly used quaternion notations.
Linear combination of four components:

g=w+Xx +yi +Z (Eq. 3.35)
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Four dimensional vector:
g=(wxy2) (Eg. 3.36)
Scalar with a vector “imaginary part”:
g=(wVv) (Eq. 3.37)
where w is a scalar quantity and v is a vector. Quaternion addition is defined in
the same manner as normal vector addition
0 +d2 = ((Wy + W) (X +X2)(y1 + ¥2) (21 + 22)) (Eq. 3.38)
If sisascalar, then scalar multiplication with a quaternion is defined as
s = (sw, sv) (Eq. 3.39)
Quaternion multiplication can be defined using Eqg. 3.30 through Eqg. 3.33. Let
Q1 =Wy +ixg +jyg +kzg and g =wp +ixp +jyp +kzp. Then

a1 * A2 = (WiWo - X% - V1Yo - 212) +
(W +WiXp - 215 +Y125) +
J(ytWo + 295 +WpY; - X2p) +
K(zywa - y1Xo + X1y +Wy2p)

(Eq. 3.40)

Note that COOK92 has sign errors in quaternion multiplication. The same result can be
accomplished through a vector dot product, vector cross product and vector scalar
multiplications [MCGH98A].

0r* 02 = (WaWp - Vg - Vo, WyVp +WaVp +V1 7 Vo) (Eq. 3.41)
Because of the vector cross product, the quaternion product is not commutative. Some
mathematical facts related to quaternions are as follows [SHOE94, CRAI89]

Quaternion addition rules;
O1+02 =0 +0 (Eq. 342)

(01 +02) +dz3 =d; +(qz +az) (Eq. 3.43)
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q+0=0+q
q+(-6)=(-)+q=0
Quaternion multiplication rules;
(192)d3 = %1.(9203)
lg=09l=q

@ t=qlg=1

if 9102 =0, theneitherg; =0orqg, =0

(01 +02)d3 = 0103 + 0203

The quaternion conjugate;

g =w-v)=(w, - X -y -ZK)=(W-Xx-y-2

The quaternion Norm;

N(Q) =ag* = w2 + V2 =w? +v - v=gf

The magnitude of a quaternion is the square root of its norm.

M(a) = /N()
The quaternion inverse is evidently
-1 _ q*
T TN
and for a unit quaternion
at=q"

which is easier to compute than the inverse of a matrix.
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(Eq. 3.44)

(Eq. 3.45)

(Eq. 3.46)

(Eq. 3.47)

(Eq. 3.48)
(Eq. 3.49)

(Eq. 3.50)

(Eq. 3.51)

(Eq. 3.52)

(Eq. 3.53)

(Eq. 3.54)

(Eqg. 3.55)



The normalized unit quaternion is given by

q q q
Onormalized = IN@ = «/E = M(q)
Any scalar can be represented as a quaternion.
g=(s000) =(s0)
Any three dimensional vector can be represented as a quaternion.
q=(0xy2z)=(0,v)
As an alternative, a quaternion can be represented as
q=w+V
The vector part of quaternion can be rewritten as
V=9 =TS

where,

s=|= \/(x2 +y2 +7%)

andr is the unit vector given by

vV Vv
r=—= T
s WM
With this notation a quaternion becomes
g=w+rs

(Eq. 3.56)

(Eq. 3.57)

(Eq. 3.58)

(Eq. 3.59)

(Eq. 3.60)

(Eqg. 3.61)

(Eq. 3.62)

(Eq. 3.63)

Another representation, the quaternion exponential form is defined as [MCGH98A];

el = gWHS = gWefs

e’ = coss+Tsins
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The conjugate becomes

*

g =w-Trs (Eq. 3.66)

2. Rigid Body Rotation with Quaternions
The orientation of a rigid body can be described as a rotation (q) about a single
inclined axis (u). Constraining the axis (u) to be of unit magnitude, the unit quaternion

(q) representing this rotation is [MCGH97]

& q4 g.990
q=g osz,uSinzb (Eq. 3.67)

where u is a unit vector describing the axis about which the vector p is to be rotated

through an angle g [BACH97B]. The rotation of a vector, p by aquaternion, q is defined

as [SHOESS5, FUND96]

Rotated =aPA"" (Eq. 3.68)

The quater nion rotation defined in Eq. 3.68, rotates the vector’ s perpendicular component

twice the angle which is perpendicular to the rotation axis, and leaves the vector's

parallel component unchanged. To obtain the desired rotation half of the rotation angleis
used in the construction of the unit quaternion given by Eq. 3.67 [MCGH98A)].

Every rotation has two representations in quaternion space, namely g and —q, with

the same effect [WATT98]. By using this topological oddity, Eq. 3.68 can be rewritten

as

Rotated = APA™ " = () p(- )" (Eq. 3.69)
The product of two unit quaternions is aways of unit magnitude. The product
0201 produces a single quaternion describing an orientation achieved by applying 0.

relative to the orientation described by q:, where both quaternions are expressed in Earth
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coordinates. If rotations are described by quaternionsin body coordinates, then the order
of the product is reversed.

It should be noted that, unlike Euler angles, quaternion rotations require only two
trigonometric functions to rotate a vector and experience no singularities at any angle of
rotation.

To illustrate quaternion rotation through an example, let p=(0 1 0 0) describe a
body oriented along the x-axis, wings level, headed to north. A positive 90° rotation
about the y-axis can be represented by

g = (Cos45°,vSn45°) (Eq. 3.70)
= (0.707 00.707 0) (Eq. 3.72)
wherev =(010).

The following product rotates the body with an orientation described by p 90°

about the y-axis

Protated = AP0 (Eq. 3.72)
=(000-1) (Eg. 3.73)
which represents an orientation along the —z-axis, in which the body is pointing straight
up [BACH97B].
3. Derivation of Quaternion Rates from Body Rates
Angular rates p, g and r, can be used to find the derivative of the orientation, ¢,
relative to an Earth fixed coordinate system.

For small ?

cos% @l sn (Eq. 3.74)

N |Q
o
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Thus

q= gcosg VSi nﬂg YL

1 Vs (Eq. 3.75)

Assuming ? changes linearly with time, the orientation expressed by q as a

function of time becomes, for small t:
(Eq. 3.76)

The vector vq , expresses an angular rate of g about avector v in body coordinates. Thus

va=(paqr) (Eq. 3.77)

and q(t) becomes
el 110
q(t) = g[ > pt > gt 2rtb (Eq. 3.78)

Taking the derivative of q(t) with respect to time produces

d 1 1 1
—gt)=g=(0,=p =g =r Eq. 3.79
Olt0|()q(2|o2qz) (Eq )
1
= E(O pqr) (Eq. 3.80)
1
=3 By (Eq. 3.81)

If g is the initial aientation in Earth coordinates and g, is a second rotation in

body coordinates then gs is the composite of the two rotations

Q3 = 0102 (Eg. 3.82)
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By the product rule

1
43 =012 + a1l = Q10 = quB"" (Eqg. 3.83)

In general [BACH97B]

1 1
ngqu ZEQ(ODCIV) (Eq. 3.84)

This general formula can be used with Euler integration to achieve a smooth
rotation. Eq. 3.84, also avoids the “branch cut” problem of the Euler angles. After every
full 360 degree rotation, the quaternion representing the rotation will switch to its
negative [MCGH98A] as presented in Eq. 3.69.

4, Concatenating Rotations

Suppose g; and g are unit quaternions representing two rotations relative to Earth
coordinates, and it is desired to perform q; first and then g.. To do this, we apply g to
the result of @3, regroup the product using associativity, and find that the composite

rotation is represented by the quaternion gz * .

do*(@1*P*ar H*ax 1 =(a2*qy)* P*(ast*agp ) (Eq. 3.85)
=(d2 *d0)* P* (A2 *q1) ™ (Eq. 3.86)
5. Computing Rotation M atrices from Quater nions

The only time we need to compute a matrix is when we want to transform the
object using a homogenous transformation. Alternatively, rotation and translation can be
handled separately, eliminating the need for computing the rotation matrix [SKOP96].
Matrix multiplication requires many more operations than a quaternion product. Thus,

efficiency and numerical accuracy isimproved through the use of quaternions rather than
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matrices. A rotation matrix for the given rotation can be calculated from a quaternion

representing that same rotation. The general rotation matrix is as follows;

7

ng+x2- y2- 22 xy+2wz 2xz- 2wy 0 3
9 _ _2 2xy - 2wz W2—X2+y2—z2 2xy+ 2wx 0 ﬂ (Eq. 3.87)
matrix ~ a 2.2 2,2 a
a 2zZ+ 2wy 2yz - 2Wx Wo-X"-y“+z 0 i
8 0 0 0 W2+x2+y2+22h,J
The smplified version of this matrix for unit quaternions is [SHOES85];
g'l- 2y2 - 27°  2xy+2wz  2xz-2wy 03
B2xy-2wz  1-2x%- 272 2xy+ 2wx ou
Qrratrix = & ) X G (Eq. 3.88)
€ 2xz+ 2wy 2yz-2wx  1-2x° - 2y ou
& 0 0 0 14

Using this matrix, the rotations of a vector P can be computed as [COOK 92]

Rotated = P* Qmatrix (Eqg. 3.89)

6. Serp
The use of linear interpolation between two unit quaternions produces non-unit
guaternions without normalization. Spherical linear interpolation @erp) between two

unit quaternions is a natural generalization of linear interpolation [SHOES85] and is

obtained by
sin(1- uyW sinuw
derp(dq,dp,u) = ag (sinW) *% gow (Eg. 3.90)
dy- Qo = CcosW (Eq. 3.91)

where u is between 0 and 1, and O is the interpolation angle between two key
guaternions. For the opposite direction, the interpolation angle becomes 2p - O

[WATTO8].



Given any two key quaternions, p and g, there exists two possible arcs along
which we can move. One of these arcs is shorter. A method for finding the shortest
interpolation between the quaternion pairs p and g, and p and —q is as follows. First find
the magnitude of their difference, that is (p- ) - (p- g), and then compare this to the
magnitude of the difference when the second quaternion is negated, that is
(ptQq): (p+q). If theformer is smaller, then we are aready moving aong the smaller
arc and nothing needs to be done. If, however the second is smaller, then we replace g by
— and proceed [WATT98].

D. COMPARISON OF EULER ANGLES AND QUATERNIONS

Quaternions and Euler angles each have their own advantages and disadvantages.
The most significant advantage of quaternions is that no singularity exists when the
elevation angle (?) passes through +p/2. Any orientation or rotation can be represented
by quaternions. In the Euler Method, roll and azimuth Euler angle rates become
undefined due to division by zero. Truncating the angles at +p/2 will avoid this problem.
However, this truncating will result in some skipping during the rotation [COOK92].

Quaternion rotation avoids the “branch cut” problem of Euler angles. When using
guaternions to rotate an object, after every full rotation the quaternion representing the
rotation will switch to its negative.

Quaternions can be computed directly from the dynamic equations, bypassing the
computation of transcendental functions necessary in computing Euler angles. This
direct arithmetic operation reduces the cost of computation compared to matrix

multiplication.
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Quaternions are compact and simple. However, there are three difficulties with
using quaternions. First, each orientation of an object can actually be represented by two
guaternions. Since rotation about the axis, v by an angle ? is the same as rotation about
-V by the angle —?; the corresponding quaternions are antipodal points on the sphere in
4D. Second, orientations and rotations are not exactly the same thing. In an animation,
360° rotation is very different from arotation of 0°. With the first one, the model will be
animated for a full rotation. In the second one, no animation will be executed. After the
rotation however, the same quaternion (1 0 0 0) or ¢1 0 O 0) represents both. Thus
specifying multiple rotations with quaternions requires intermediate control points
[FOLE97].

The third difficulty is that quaternions provide an isotropic method for rotation.
The interpolation is independent of everything except the relation between the initial and
final rotations. Thisis useful for interpolating orientations of tumbling bodies, but not for
interpolating the orientations of a virtual camera in a scene. Humans strongly prefer
cameras to be upright, and are profoundly disturbed by tilted cameras [FOLE97]. By its
very nature, the notion of a preferred direction cannot easily be built into the quaternion
representation [WATT98]. Quaternions have no such preferences, and therefore should
not be used for camera interpolation. The lack of an adequate method for interpolating
complex camera maotion has led to many computer animations having static cameras or
very limited camera motion [FOLE97].

E. SUMMARY

This chapter presented a brief overview of two methods, namely Euler and

Quaternion methods, used to represent the rotations and orientations of arigid body. This
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chapter also provided some introductory information about quaternion operations. The
next chapter introduces the theory and the mathematical formulation of a quaternion

attitude estimation filter.
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V. QUATERNIONATTITUDE ESTIMATIONFILTER

A. INTRODUCTION

The purpose of any filter is to separate one thing from another [BROW97]. The
main purpose of the Quaternion Attitude Estimation Filter is to combine independent
noisy inertial measurements to determine the orientation of a tracked object. The
Quaternion Attitude Estimation Filter uses different types of instruments to get the
measurement values and implements a nonlinear complimentary filter.  Orientation
estimates are corrected by minimizing the mean sguare measurement error. The
Quaternion Attitude Estimation Filter is designed as a complimentary filter. However,
with the addition of bias estimation, it can no longer be considered a complimentary
filter. This chapter will present the mathematical theory of the quaternion filter, the filter
linearization theory, bias estimation considerations and the white noise effects on the
filter.
B. QUATERNION ATTITUDE ESTIMATION FILTER

The Quaternion Attitude Estimation Filter was proposed by [MCGH96] as an
aternative representation and improvement to filters based on Euler Angles. The
Quaternion Attitude Estimation Filter is designed to track human limb segments through
al orientations as part of an inertial tracking system. It uses three different types of
sensors to obtain the information about the orientation of a tracked object. These sensors
are a three-axis accelerometer, a three-axis angular rate sensor and a three-axis

magnetometer. These sensor inputs appear in Figuwe 4 as (Xy2), (pgr), and

(by by bg), respectively.

39



beb |

L ]

Ay

]

_@ _”m.w Eplp _”_.wu_

. (bup btbuy )

b
me‘

1My

O~ (B4 = ()

(D)t

+

(4B d)

LOSUAS 2J0 JDTNSUY

+
T _
Emﬁ =8
(4Bdq) u%m -
(% 9 %)
§DIg pajpuiey
%%y By Gy =(z4 %)
AR T uzsuiodzia00y
(tq % 1)

AFIBUOFBUS DT

Figure 4: Quaternion Attitude Estimation Filter
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The three-axis accelerometer measures the combination of forced linear
accelerations and the reaction force due to gravity, a,easureq = a- G [FOXL94].

The three-axis angular rate sensors measure angular velocity. The angular rate
sensor experiences drift errors over time. To correct the measured angular rate sensor
data in both the horizontal and vertical planes, accelerometer and magnetometer
information is required.

Normally, the direction of the Earth’s gravity vector, m, expressed as a unit
vector, is down. For low frequency considerations, the linear accelerations of a body
average to zero. That is, in the long term, the accelerometer senses only those
accelerations due to gravity [BACH97B]. Thus, on the average, the three-axis

accelerometer returns the gravity vector or the local vertical, 8easureq = - 9[HENA97].

The down unit vector in quaternion form can be represented as
m=[0001] (Eq. 4.1)
The three-axis magnetometer measures the Earth’s magnetic field, b, in body
coordinates [HENA97]. The main purpose of the magnetometer is to sense the drift error
of the angular rate sensor about the vertical axis. This can not be sensed by the
accelerometer [HENA97]. The Earth’s unit magnetic field, n, at any location is known
and can be calculated or looked up [BACH97B]. The Earth’s unit magnetic field can be

represented as a unit vector by;

n=[0m ny ng] (Eq. 4.2)
The characteristics of the Earth's magnetic field in the loca area must be

determined to find n, which incorporates the declination and the dip angle. Magnetic

41



declination is defined as the differrence between the north compass heading and the true
geographic north at a given location on the Earth's surface. Monterey, CA requires a
correction of 15°. The lines of the Earth's magnetic field are parallel to the surface at the
equator. However, as one approaches the magnetic poles, they become increasingly
vertical. Dip angle is the correction of the measure for the downward deflection of the
local magnetic field. In Monterey, a correction of -60° is applied [HENA97].
C. DERIVATION OF THE FILTER

The Quaternion Attitude Estimation Filter takes normalized measurements from
the three-axis accelerometer and from the three-axis magnetometer as shown in Figure 5

[HENA97].

Magnetometer
(bl bz E:'3:j

Acceleromeifer

E92= G hy hy | BB

0

Figure 5: Upper Left Part of Quaternion Attitude Estimation Filter
The accelerometer returns the local vertical, h and the magnetometer returns the

Earth’s loca magnetic fied, b. This information is expressed in body coordinates as
3-dimensional unit vectors in the form of the pure imaginary unit quaternions given in
Eg. 4.3 and Eq. 4.4.

h=[0hy hy hs] (Eq. 4.3)
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b=[0by by, bs] (Eq. 4.4)
The filter combines these vectors to get the measured vector, yq given by;
é u
ey
50 =€ 2 (Eq. 45)
0~ u .4
&1 g
a
&2
83l
After forming the measured vector, the filter calculates the computed
measurement vector, y(§) , using the estimated orientation quaternion, §. The Earth’s
unit gravity vector, m, and the loca magnetic field vector, n, are rotated into body

coordinates in order to permit comparison with the measured orientation vector. The

estimated orientation of body, §, determines h and b by;

h=§'mg (Eq. 4.6)

b=g Ing (Eq. 4.7)
Where the real or scalar part, w, is dways zero. The estimated orientation
guaternion is set when the system is initialized. The computed measurement vector is

given by;

m4.§ nqg) (Eq. 4.8)
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By removing the w values of h and b, the computed measurement vector can be

constructed as;

> (D~
>
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>
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(Eq. 4.9)
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The error is computed by taking the difference between the measured vector and

the computed vector ard is given by

e(@)ex1 = Y(Dex1 - Yogyg (Eqg. 4.10)
or
€y - hy U
e. u
&y - hyl
e U
 _dr-hgg
e(q) = %1 by i (Eq. 4.11)
€. Y
g2’ bZH
&3 - b3 g,

To correct this error an iterative method must be applied. In [HENA97], two
different iteration methods were tested in ssimulation namely; Gradient Descent and
Gauss-Newton. The Gradient descent method linearly converged, but needed dozens of
steps to arive a a satisfactory result. The Gauss-Newton method converged
guadratically and needed less iteration. Based on this result, Gauss-Newton was used for

this thesis.



For the Quaternion Attitude Estimation Filter the error correction vector which

approximates Gauss-Newton's iteration formula [MCGHG63] is given in Eq. 4.12;

_ 1loTo e
D4y = - E[X X] Nf (Eq. 4.12)
where the X matrix is given by
éqy. U
X = Y d (Eq. 4.13)
8" by

Appendix A presents the derivation of the X matrix given in Eq. 4.13.

The least-squares criterion function is given by

f(6)1a = () "1x6e(@) 6xt (Eq. 4.14)

where
e(d) " =[ (A - hy)(Fg - hp)(hg - hg)(By - by)(B - bp)(Bs - bs)] . (Eq. 4.15)
Substituting Eq. 4.15 into Eq. 4.14 yields
(@ =]y~ h)2 + (R - hp)2 + (g - hg)? + (B - by)2 + (B - by)? + (By - ba)? (Eq, 4.16)
The gradient of the error criterion function is defined as;

LT
. off qf qf qf O R
N1 (@) = GoeTer 1 1605 =2X " axee(@ext (Eq. 4.17)

The derivation of this gradient is given in Appendix B.

Subgtituting Eq. 4.17 into Eq. 4.12 yields

Digg = - %[xTx]' 12xTe(a) (Eq. 4.18)

—-[xTx]'l X4, 6e(Q) (Eq. 4.19)
= axa " 4x6 d) 6x1 g. 4.
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The ¢ in Figure 4 represents the output from the top-half of the filter, and it will
be used to correct the computed rate quaternion derivation, q. To find the output of the

top-haf of the filter the error correction vector, D4, must be multiplied by a constant

gan, k
e = kDg (Eq. 4.20)
A scalar multiplier,a , is used when dealing with data corrupted by noise
a = kDt (Eq. 4.21)
1. Linearization

Dgsy i the correction to § based upon the Gauss-Newton iteration formula.
Assuming there is no measurement noise, and that the computation of Dqy is exact, it
follows that [MCGH98C]

Ddsx1 = Gtrue - @ (Eq. 4.22)
DA ful = dtrue - @ (Eq. 4.23)
The signal flow diagram (SFG) representing this linearized system is presented in

Figure 6.

O

Qtrue Otrue q

Figure 6: Linearized System Isolating Error
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Applying Mason's formula [KUQ95] to Figure 6 to obtain the transfer function

produces
4§ kp2+pt pla+kph
Gree  1+kpl  1+kpl D (Eq. 4.24)
thus
4= P "dirue = Girue (Eq. 4.25)

This result shows that regardless of the value of k, if njand n,are zero, then
g = Qyrye- Thisisas expected for a complimentary filter.
2. Response to I nitial Condition Error

Suppose the sensors are static and § is not correctly initialized then

Oirue =(1000) (Eq. 4.26)
Go=(1Tx Ty 12) (Eq. 4.27)

If the noise sources mand n, are both zero then the SFG can be redrawn as in Figure 7

o)

Atrue DA full 4
PO PO

Figure 7: SFG for Initial Condition Error Analysis
From Eqg. 4.23

Bl =(0 -Mx -Ty -T2) (Eq. 4.28)
Since the first component did not change, g will have the form

4G=(1%92) (Eq. 4.29)
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Using Eqg. 4.27, the transform domain SFG for the scalar X is as follows

Figure 8: Transform Domain SFG for X(S)
From this SFG, and application of Mason’s formulait follows that [MCGH98B]

o -1
X(s) S 1
= = Eg. 4.30
Tx 1+ks! s+k (54 )
and therefore
(1) = 7,671 (Eq. 4.31)

Equivalent results apply for y(t) and 2(t). Thus, any transent errors in g
resulting from erroneous input from the magnetometer and the accelerometer will persist

for atime inversely proportional to k. Specificaly if
tpg = E (Eq. 4.32)
Dq = K q. 4.

then for any disturbance 1, the resulting error in the x component of § will be

-t
'Dq
eq(t)="1ye (Eq. 4.33)
This error will be reduced to 37% of the initial value by time t=tpy. This

shows that the filter must use a big k value. On the other hand, if the maneuver time
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constant is t maneyver » it is required that t py be much larger than this value to suppress

maneuver noise. Therefore, the qualitative requirement becomes

>> K >> (Eq. 4.34)
U maneuver Ubias
and the constraint for ?t [MCGH98C] is
1
D < o (Eq. 4.35)

Reasonable values for Dt and k can be further adjusted by experimental means.

3. Rate Sensor Bias Correction

Drift is the tendency of sensor output to change over time with no change in
sensor input and causes relentlessly increasing orientation measurement errors.  This
error is sometimes termed a bias. The integration of a bias-ridden angular rate signal will
cause a steady build-up of error over time. This leads to an incorrect estimation of the
body orientation relative to the Earth-fixed coordinate system. Angular rate sensor biases
typically change unpredictably over time, making a smple, complete compensation
impossible [ROBE97].

The filter takes the angular rate sensor readings and computes the bias-corrected

output, By, . To find the bias-corrected output, the filter must estimate the bias error and

use this estimate to correct subsequent measurements. Discrete low pass filter theory
provides a method for obtaining a rate bias estimate [KUQO95].

The quaternion filter bias estimation is based on Shallow Water AUV Navigation
System (SANS) experience [ROBE97]. The approach taken to deal with this problem in

SANS was to estimate an initial value for the bias by averaging the rate sensor output
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before beginning maneuvering and then tracking the time-varying drift with a very long

time constant low pass filter [MCGH98D]. The signal flow graph for qneasured 1S 9iven

in Figure 9.
Gtrue Omeasured
>
1 1 1 1
1
-1
- KpiasP
Rate sensor noise
Figure 9: Bias Estimation Filter
Evidently
' 1
Omeasured _ _ P (Eq, 4.36)

irve 1+ KpiasP” 17 p+Kpias
Thus, with the addition of bias estimation, the quaternion filter is no longer a
complimentary filter since constant rates of rotation are eliminated. This effect can be
minimized by applying the constraint
k >> Kpjias (Eq. 4.37)
If k istoo large, then the filter may become unstable or too much maneuver induced error
may appear in § [MCGH98D].
The computed quaternion derivative, g, is computed by the lower left-hand

portion of the filter, Figure 10 [HENA97]. The expression for gis as given in Eq. 3.84.

q= %q Bw (Eq. 4.38)
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Figure 10: Lower Left Part of Quaternion Attitude Estimation Filter
The bias-corrected angular rate quaternion is corrected for the estimated bias (pp

Ob I'v). The corrected quaternion derivative §is computed by

4=9- Ge (Eq. 4.39)
The corrected quaternion derivative is then numerically integrated and

normalized. The resulting numerical integration equation becomes
X L 1, -1 R
Gn+1 = bn +§anth+k[xTx] X Te(6,)Dt (Eq. 4.40)

The normalized result is the estimated orientation quaternion, ¢, which yields the
next approximation. This approximated orientation quaternion can be used for the
graphical representations of atracked object in avirtua environment.

D. WHITE NOISE EFFECTS

White noise can be represented by a squence of statiscally independent numbers.

The white noise effects on the filter for the Gauss-Newton method were tested by using a

simulation program written in ANSI Common Lisp [HENA97]. A 6D white noise vector
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was added to the measurement vector and a different white noise sample was used for

every iteration. A scalar multiplier,a , was used to decrease the white noise effects on

the filter. The modified filter with the white noise is shown in Figure 11.

Magnefometer White Noise
(&) by by) frllrni n2 n3 nd nd)

Accelerometer

(5 2)= Oy y 1y)

LG

1

@ mg.g7ng) [»

Oy iy T

E(é)z}?(g')_fo

Estimated Bias |
(pb e ’vb)

B
w=(0pgr

(Q'D 4192 9’3) q
J Va*q

Angular Rate Sensor
(pgr

Figure 11: Modified Filter with White Noise
This modification is only made for testing the white noise effects on the filter; in

real-time implementations this white noise must assumed to be in the measurements from
the sensors. The filter responded to the simulated white noise in a corrective manner and
the results were very close to the results with perfect noisless inputs.

Two important results were obtained from this test. The first one was that
reducing a improves results in the long term, but takes longer to converge. The second
result was that for tracking motion, the optimala depends on the rate of motion and the
noise level. The simulation results without white noise and with white noise are

presented in Figure 12 and Figure 13 respectively. The Figure 12 shows an exponential
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Figure 12: 10 Degr ee Offset, a=0.1, ?t=0.1, No Noise
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Figure 13: 10 Degree Offset, a=0.1, ?t=0.1, With Gaussian White Noise,
Noise Standard Deviation=0.57 Degree
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convergence. This result proves the value of the linearization theory and the error
convergence formula given in Eq. 4.33.
E. SUMMARY

The Quaternion Attitude Estimation Filter offers significant improvements over
filters using Euler angles. Inputs are obtained from a 3axis accelerometer, a 3axis
angular rate sensor and a 3-axis magnetometer. No singularities or divide by zero errors
exist for any orientation and no trigonometric functions are required. Using unit
guaternions makes calculating inverses simple and provides an increase in computational
efficiency over matrix multiplication.

The next chapter presents the hardware configuration of the quaternion attitude

estimation filter system.



V. SYSTEM HARDWARE CONFIGURATION

A. INTRODUCTION

The hardware components of the quaternion attitude estimation filter system are
configured for testing purposes. These components consist of a sensor block which holds
a 3-axis magnetometer, a 3-axis accelerometer and a 3-axis rate sensor, a 12 VDC power

source, an I/0O connector, a 16-bit analog to digital (A/D) converter and a PC, Figure 14.

|/O Connector
Breakout
header
Ribbon S
Cable
Sensor Block Battery

Figure 14: System Hardwar e Configuration
The power source supplies 12 VDC power for the sensor block. The iibbon

cables, that carry actual output voltages from the sensors, are connected to the separate
analog input channels on the I/0O connector via a breakout header. The A/D converter
card is physicaly in the PC and receives data from the sensors via the 1/O connector.
This chapter will summarize the hardware configuration and the main hardware

component capabilities used in the quaternion attitude estimation filter system.
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B. HARDWARE DESCRIPTION

1. Sensor Block

The sensor block contains three individual €nsors. The main purpose of this
sensor block is to implement a small 9-axis sensor system. The sensor block contains a
3-axis magnetometer, a 3-axis accelerometer, and a 3-axis rate sensor, Figure 15. This

sensor block was constructed by [MCK193].

Figure 15: The Sensor Block [M CK198]
The sensor block is covered with foam. The foam covering provides shock

protection and a stable temperature environment for the sensors. The measurements of
this package with foam coverage are 10.7 x 5 x 3.7 cm, and without foam coverage are
9.1 x39x 2cm. The size of the sensor block is very small, but with smaller sensors, a
smaller sensor block can be constructed.

The outputs from this sensor block are connected to the 1/0 connector by a ribbon
cable via a breakout header. The DC power supply is aso connected to this breakout
header.

The 3-axis magnetometer is a Honeywell HMC2003 type magnetic sensor, Figure

16. The HMC2003 is avery small hybrid chip and can detect magnetic fields of less than
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40 microgauss about three axes. Some characteristics of HMC2003 are given in Table 1

[HONEOS].

Figure 16: Honeywell HM C2003 3-axis M agnetic Sensor Hybird [HONE98]

Characteristic Range Units
Supply Voltage 6-15 VDC
Field Range -2-2 gauss

Output Voltage 05-45 \

Resolution 40 U gauss

Bandwidth 1 KHz

Null Field Output | 23-27 | V

Table 1. 3-axis Magnetometer Specifications

The 3-axis accelerometer is a Crossbow Technology Inc. CXL04M3 type 3-axis
accelerometer, Figure 17. The CXL04M3 can measure accelerations about three axes.

Characteristics of CXL04M3 are given in Table 2 [CROS98].

Figure 17: Crossbow CXL 04M 3 3-axis Accelerometer [CROS98]
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Characteristic Range Units
Supply Voltage +5 vDC
Span Range +4 + 5% G
Output Voltage 0-5 V
Resolution 5 mGrms
Bandwidth DC-100 + 5% Hz
Sensitivity 500 + 5% mV/G
Zero G Output 25+0.1 \%

Table 2: 3-axis Accelerometer Specifications

The 3Jaxis rate sensor is a Tokin America Inc. CG16DO0 type solid state rate
sensor. The CG16D0 can measure the angular velocities about three axes. Some

characteristics of CG16D0 are given in Table 3 [TOKI98].

Characteristic Range Units
Supply Voltage +5 VDC
Detect Range +90 deg/sec
Output Voltage 0-5 Vv
Bandwidth 100 Hz
Sensitivity 1.1+ 20% | mV/deg/sec
Reference Voltage Output 2.4+ 10% \%

Table 3: 3-axisAngular Rate Sensor Specifications

The sensor block can support 100 Hz sampling rates. The magnetometer has a

1 KHz bandwidth.
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2. A/D Converter

The A/D converter is a National Instruments Corporation® [NATI98] PCI-MIO-

16XE-50 data acquisition (DAQ) card, Figure 18. It is physically inserted into the PCI

dot of a PC motherboard. The PCI-MIO-16XE-50 is a 16-bit A/D converter, it hes 16
single-ended or 8 double-ended analog input channels. Its maximum sampling rate is

20 K samples/sec. The recommended warm up time is 15 minutes.

Figure 18: National Ins. PCI-M10-16XE-50 Data Acquisition Card [NATI198]
It can measure analog inpu voltages between OV — 10V (single sided) and £10V

(double sided). Sensor output voltage connections with A/D converter channels are

shown in Table 4.
Angular Rate Sensor Accelerometer Magnetometer

X y z X y z X y z

p q r hl h2 h3 bl b2 b3
Channel No 0 1 2 3 4 5 6 7 8
Pin No 68 33 65 30 28 60 25 57 34
Ground 67 29 64

Table 4. Sensor Channel Connections
3. Other Components

The computer used in the research described in this thesis contains a 333 Mhz

Intel Pentium Il CPU and 64 MB of RAM. The operating system is Microsoft Windows

95™.,
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Figure 19: National Ins. SCB68 I/O Connection Board [NATI98]
The 1/0 connector is aNational Instruments Corporation® [NATI98] SCB68 type

I/O connection board, Figure 19. This I/O connector connects the output ribbon cable
from the breakout header with the associated channels of the A/D converter.
C. SUMMARY

The hardware configuration described in this chapter was used for the quaternion
attitude estimation filter system. For further information about the hardware components
refer to the related product catalogs and the web sites of the manufacturers. The
estimated equipment and material cost of the hardware except the PC is about $3.500.
The next chapter presents the software design documentation of the quaternion attitude

estimation filter.
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VI. SOFTWARE DEVELOPMENT

A. INTRODUCTION

The Unified Modeling Language (UML) is a language for expressing the
constructs and relationships of complex systems. A critical aspect of rea-time systemsis
how time itself is handled. The design of a real-time system must identify the timing
requirements of the system and ensure that the system performance is both correct and
timely [DOUG98]. UML is particularly well suited for designing rea-time embedded
systems.

The features, concepts and visual notations used in UML are explained in
[DOUGY98]. During the software development process of the quaternion attitude
estimation filter the Rational Rose 4.0 software design tool [RATI98] was used to
implement the system in UML.

The steps in software development are system requirements analysis, system
analysis, system design and implementation [DOUG98]. This chapter will present these
steps for the quaternion attitude estimation filter software devel opment.

B. SYSTEM REQUIREMENTSANALYSIS

The quaternion attitude estimation filter (QAEF) is a complementary filter
designed to track human limb segments through all orientations as part of an inertia
tracking system. The QAEF uses three different sensors to obtain the information about
the orientations of a tracked object. These sensors are a 3-axis accelerometer, a 3-axis
angular rate sensor and a 3-axis magnetometer. The system gets these sensor readings

through an I/O connector by using an analog to digital (A/D) converter. The system
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samples and filters these data to produce an estimated orientation of the tracked object in

the quaternion form.
The QAEF will filter the data from only one set of sensors, but is intended to be

the building block for a body suit using severa sensor blocks. The system use case

A

diagram is presented in Figure 20.

U2: Filter Data Simulation
Frograrm
== SRgEE
SEeNnsOrs
L1 Get raw data
Figure 20: Use Case Diagram
Estimated
) . Result
grlentanon Quaternion Attitude P 4
aa Edtimation Filter —
— Simulation
/ Program
Sensors

Figure 21: Context Diagram

The system’s interaction with the actor objects is shown in the context diagram,
Figure 21. A sequence diagram which shows the sequence of messages between objects

is presented in Figure 22. The scenario diagram is the same as the sequence diagram,
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because the system has a continuous behavior and there are no external events related to

the system.
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The system will target a sampling rate between 40 Hz and 100 Hz, and an update

rate of at least 30 Hz for real-time applications. The use cases and the system goals are

presented in Table 5 and Table 6 respectively.

System has to get data from the sensors and convert it into digital

Godl 1 data with a sampling rate of at least 40 Hz

Goal 2 System has to have at least a 30 Hz update rate at the end of the
filtering process.

Table 5. System Goals

Use Case (U1) Get raw data

Actor Sensors

Goadl Traced to God 1

Preconditions | Sensorsand A/D Converter are running

Description Object rotates or keeps itsrotation. System will always get the
readings from the sensors, convert this datainto digital data

Sub Use Case | None

Exception None

Activities Get the readings and write into a buffer

Postconditions | Continue getting data

Use Case (U2) Filter data

Actor Simulator program

Goal Traced to Goal 2

Preconditions | Sensors, A/D Converter and system are running

Description System will get the data from buffer and produce an estimated
orientation in the quaternion form by filtering the data

Sub UseCase | None

Exception None

Activities Read data from the buffer, apply filtering algorithms and calculate an
estimated orientation

Postconditions | Continue filtering processes

Table 6: System Use Cases

The mgjor functions performed by the QAEF are data acquisition, data filtering,

and updating, displaying and sending the estimated results. The actual system functions

aregivenin Table 7.




System Functions Rank Use case
R1. Data Acquisition Functions

R1.1 Get sensor readings Essential | Ul
R1.2 Write data into the buffer Essential | Ul
R1.3 Read data from the buffer Essential | U1, U2
R2. Data Filtering Functions

R2.1 Average the data Essential | U2
R2.2 Calculate measurement vector Essential | U2
R2.3 Calculate computed measurement vector | Essential | U2
R2.4 Calculate error Essential | U2
R2.5 Calculate bias error Essential | U2
R2.6 Calculate X-matrix Essential | U2
R2.7 Calculate Gauss-Newton iteration Essential | U2
R2.8 Calculate numerical integration Essential | U2
R2.9 Convert datainto digital Essential | U2
R3. Matrix Operations

R3.1 Multiply Essential | U2
R3.2 Invert Essential | U2
R3.3 Transpose Essential | U2
R3.4 Convert to quaternion Essential | U2
R3.5 Print Essential | U2
R4. Quaternion Operations

R4.1 Add Essential | U2
R4.2 Subtract Essential | U2

Table 7: System Functions

65




R4.3 Quaternion multiplication Essential | U2
R4.4 Rotation Essential | U2
R4.5 Dot product Essential | U2
R4.6 Derivative Essential | U2
R4.7 Normalize Essential | U2
R4.8 Print Essential | U2
R5. Output Functions

R5.1 Print to the screen Desired )
R5.2 Write into afile Optional | U2
R5.3 Write into a buffer Optional | U2

Table 7: System Functions (Cont’d)

C. SYSTEM ANALYSIS

The QAEF system boundary is limited by the A/D converter. The actual filter
application will pass the estimated results to a 3D smulation or to a tracking program.
For this research the system will print the results to the screen and will write them into a
file. The system behavior is continuous and will implement a Proportiona Integral
Derivative (PID) control loop. The system will run on a PC under the Microsoft
Windows 95™ operating system. The identified objects are shown in the object diagram,

Figure 23. The system state chart showing the genera system behavior is in presented in

Figure 24.
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1 Sensors 1 A E.F 1
. ) * Simulator
Quaternion M atrix -
1 Accelerometer
1 Magnetometer 1 1_
Converter Filter
1 Angular Rate
1
Sampler

Figure 23: Object Diagram

QA.EF.

Result / print()

Filtering Data J\

Dataread

Reading Buffer ]

Start

i Updating Buffer J

& Data arrived / write() /

Figure 24. System Statechart
The system functions are distributed to the identified classes. The associations

and the relations of these classes are determined from the object diagram and from the
sequence diagram to create the class diagram for the system. The class diagram is

presented in Figure 25.
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D. SYSTEM DESIGN

Design details the largest scale software structures, such as subsystems, packages
and tasks, and specifies the internal primitive data structures and agorithms within
individual classes [DOUG98]. The QAEF system hardware configuration is explained in
Chapter V. The deployment diagram for the QAEF hardware is presented in Figure 26.

The tasks are identified as “Get Sensor Readings’, “Sample Data’ and “Filter
Data’. The “Get Sensor Readings’ task gets sensor readings and writes these readings
into the double buffer. The Filter Data task calls its server task, the Sample Data task, to
get the current sample readings. The Filter Data task receives these samples via an array
and then filters the data to produce an estimated output result. Sample Data task sends a
data transfer request signa to the Get Sensor Readings task, and then the Get Sensor
Readings task updates the transfer buffer with half of the double buffer. The Filter Data
task should wait for buffer updating and the sampling data processes. The data
transferring process from the double buffer to the transfer buffer will have a timeout.
During this period, the Filter Data task will be waiting for the sampled data and for the
Get Sensor Readings task to finish this transfer. If for some reason this process takes too
much time, then the Filter Data task should continue the data filtering process with the
current updated data. The length of the timeout is changeable and is dependent on the
speed of the filtering and the acquisition processes. The timeout value is calculated to be

1/60 of a second, but it can be changed during the system tests.
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<<processor>>
Filtering Processor

Filtering Subsystem
Data Filtering
/ Sample data Filter Data
PCI Bus
<<converter>> <<display>>
AD Converter Monitor
Acquisition Subsystem
Data Acquisition
Get Sensor
Readings
I/O Connector I/O Connector I/O Connector
<<SeNsor>> <<SeNsor>> <<SeN0r>>
Accelerometer Angular Rate Magnetometer

Figure 26: System Deployment Diagram
The QAEF system has two subsystems namely the Filtering Subsystem and the

Acquisition Subsystem. The Filtering Subsystem is responsible for data sampling and for
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data filtering. This subsystem is composed of the Filter, Sampler, Quaternion, and

Matrix classes in the Data Filtering package, Figure 27.

package Data Filtering

Quaternion

Filter

Sampler

Matrix

Figure 27: Filtering Subsystem Structure
The active objects in Data Filtering package are the Filter and Sampler. The operations

of these active objects in the Filtering Subsystem are shown in Figure 28. The Filter is
responsible for the calculations in the filtering process. The Filter object requests data
from the Sampler. Upon receiving the sampled data, it calculates the bias correction (the
Filter object must calculate the initia bias correction for the first step only). After
applying this bias error to the sampled data, it starts the calculation process to find an
estimated result. The result will be printed on the screen and will be written into afile.
The Filter object state model is presented in Figure 29.

The Sampler is responsible for initializing the calibration values, getting data
from the converter, averaging this data, and providing this sampled data to the Filter
along with the time interval of the samples. The calibration values are the zero level

voltages for the sensor readings. These values can either be found by the Sampler or can
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be hard coded. The Sampler object gets data from the converter when requested by the

Filter. The Sampler samples the data by averaging, and then sends the samples

Converter Sampler Filter
i get new sample
Update E
Buffer isHalfReady
a <
transfer data
b —» .
{c-b<=1/60 g} walt
datatransferred
c >
sample data
Update [
>
N B:IfL:t receive data filter
orm a data
transfer «
isHalfRead get new sample
a <
transfer data
b >
{d-b>1/60 s} { ) )
time out wait
d g le dat
) sample data
Time out with count
> )
receive data filter
<« | daa

Figure 28: Filtering Subsystem Operations

and the time interval to the Filter. The Sampler will wait for the data transmission from

the double buffer into the transfer buffer.

If this transmission exceeds the transmission

time, then atimeout occurs. The state model for the Sampler is presented in Figure 30.
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Figure 29: Filter Object State M odel

/ m Find zero Ievel\
get new data voltages

Check for
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and time
interval

[halfReady = true]

tm(transTime)
/getCount()

K Data transferred

Figure 30: Sampler Object State M odel
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The Quaternion class supports the system with quaternion operations and with
guaternion arithmetic as explained in Chapter I1l. This class could support any
simulation or tracking program using quaternions.

The Matrix class supports the system with necessary matrix operations. These
operations are used in the filtering process and are special for this design. It also has the
ability to make combinations of and conversions between quaternions and matrices.

The Acquisition Subsystem is responsible for getting data from the sensors and
for updating the double buffer with this data. This subsystem is composed of the

Converter classin the Data Acquisition package, as depicted in Figure 31.

package Data Acquisition

Converter

Figure 31: Acquisition Subsystem Structure

The Converter is an active object. The Converter class provides an interface between the
system and the converter hardware. The Converter is responsible for initiating and
calibrating the A/D converter, for monitoring the data collection process, for updating the
double buffer with new data, and for transferring halves of the double buffer into the
transfer buffer. The Converter communicates with the Sampler during this transfer
process. It checks for the timeout condition and monitors all events for any possible error
in data acquisition, such as buffer overflow and buffer overwrite. The Converter
concurrently checks the channels for new data, and checks for any requests from the
Sampler. The operations of the Converter in the Data Acquisition Subsystem are shown
in Figure 32.
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Figure 32: Acquisition Subsystem Operations

The Converter updates the double buffer when new data is received and it transfers the

data into the transfer buffer. The state model for the Converter is presented in Figure 33.

Start

[overwrite] / reStart()

-~

Updating

Double Buffer

Data Arrived / Writeg()

tm(transTime) / getCount()

datatransfered

Check <
Request | 4

\

[HalfReady] / transfer()

Transfering
Data
> /

Figure 33: Converter Object State M odel
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E. SYSTEM IMPLEMENTATION

The system was implemented using the C++ programming language and the
Visua C++ 5.0 compiler. The attribute and the variable names given are the same as
those used to define the Quaternion Attitude Estimation Filter in Chapter 1V. The
attributes and the variables are commented and the functions are explained along with
their parameters in the function headers. Terminology consistency between the
documentation and the code were strived for throughout implementation.

The Gauss-Newton method and the filtering equations are implemented in the
Filter class as they are presented in Chapter 1V. Operator overloading is used in both the
Quaternion class and the Matrix class to clarify the source code and to provide for ease of
use. The Quaternion class has the ability to perform every quaternion operation
explained in Chapter I11. Every class has the ability to print its pre-specified attributes by
overloading the stream insertion operator.

Utility functions to write into and read from a file are provided for the user. All
classes have default constructors, but the user has the opportunity to initialize the objects
by reading the initial values from a configuration file.

A function library, nidag32.lib, is used to program the converter and these
functions are explained with their parameters in [NATI98A]. The converter has two
types of data acquisition, single buffered and double buffered. Single buffered operations
are relatively simple to implement, and can usually take advantage of the full hardware
speed of data acquisition device. However, more sophisticated applications involving

larger amounts of data input at higher rates require more advanced techniques. One such
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technique is double buffering. This allows continuous, uninterrupted input of large
amounts of data[NATI98B]. In thisimplementation, double buffering was chosen.

The converter is configured to work in bipolar mode, +10 V, with board gain 2.
In this configuration, the digital ranges for the actual voltages will be between —-32768
and 32767. These values are used to initialize the converter object.
F. SUMMARY

The QAEF software is designed to track motion in all orientations in real time.
The UML and its visual notations were used to analyze and to design it. The software is
written in C++, with the Visua C++ 5.0 compiler, for use on an IBM-compatible
processor. This chapter presented a general overview of the software development
process. The source code is presented in Appendix C. The test plans and the actual
testing of a system are the fina steps in the software development process. The next

chapter will present the testing methodology and the test results of the QAEF system.
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VIl. SYSTEM TESTING

A. INTRODUCTION

System testing is the fina step in software and hardware development. The
guantitative tests focused on the software and the accuracy of the system. This chapter
presents system calibration, testing methodology and the test results.
B. SYSTEM CALIBRATION

To initidize the system three values must be provided to the QAEF object,
namely converter number, buffer depth and a constant gain value for k. The converter
number specifies the converter to use when there is more than one converter. The buffer
depth indirectly determines update rate. Up to the point of buffer overwrite errors, small
buffer depths will provide faster update rates. The constant gain value Kk is discussed in
Chapter 1VV. Throughout the quantitative tests, k was set to 3 and awas kept less than 1.

Most of the calibration is done within the sampler object. The sampler object has
a self-calibrating function namely findZeroVoltages. This function finds the zero leve
voltages for angular rate sensors and accelerometers. The sensor block must be sitting on
a level surface for several milliseconds to find these zero level voltages. Hard coded
values may aso be used. These hard coded values can be determined by taking the
average values of the maximum and the minimum readings of each sensor in the sensor
block. The self-calibration process can be enabled or disabled. When the self-calibration
is enabled the findZeroVoltages function will initiadize the sampler, otherwise the
sampler will initialize itself with hard coded values. In actua tests, initializing the Earth
magnetic field to the first reading from magnetometer obtained during calibration

provided better results and ssimplified the initialization process.
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All calibration of the A/D converter is done automatically by the converter object.
The parameters to calibrate the A/D converter are chosen to get the best performance
from the A/D converter. These parameters can easily be changed using the parameters
discussed in [NATI98A] and making changes to the converter object.

C. TESTING METHODOLOGY

The sensor block was mounted on the tilt table using a nonferrous extension,
which has approximately the length of a human forearm. The tilt table was programmed
to rotate 45 degrees at a rate of 10 degrees per second on every axis for a series of roll,
pitch and yaw tests. After initializing the system, three rotations were completed by the
tilt table in each test. During each test, a 15 to 20 second stabilization period followed
each movement. The scale factors and buffer depth values were adjusted to obtain the
desired update rate and accuracy.

D. TEST RESULTS

The following results were obtained using the hardware and software described in
Chapters V and VI. To achieve an update rate of 55 Hz, the graphical representation of
orientation was disabled. The update rate with the graphical orientation representation
and a single processor was approximately 15 Hz. Theroll, pitch, and yaw test results are
presented in Figures 34, 35, and 36 respectively.

Estimated orientation was within 1 degree of actual steady orientation throughout
the tests. The smoothness of the graphs indicates excellent dynamic response. The small
impulses observed at the starting points of motion were hypothesized to be linear
acceleration effects exaggerated by a whipping motion of the nonferrous extension
block. It isexpected that adjusting the filter scale factors and gain values will reduce this

80



50

45

40

35

30

25

20

15

10

50

45

40

35

30

25

20

15

10

L

.

Figure 34: 45 Degree Roll Test, 10 deg/sec, a=0.054, 55 Hz.
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Figure 36: 45 Degree Yaw Test, 10 deg/sec, a = 0.054, 55 Hz.
effect and improve the overall accuracy and dynamic resporse. The transition times

observed in the plots are around 4.5-5 seconds as expected for a 10-degree per second
rotation rate to 45 degrees. In qualitative tests, the system was able to track all
orientations, including those in which pitch equaled 90 degrees; the same orientations
normally cause singularitiesin Euler angle filters. The qualitative tests also show that the
system could easily be combined with a ssmulation program and track motion in real
time.
E. SUMMARY

This chapter has described the system calibration, the system testing methodol ogy
and the qualitative and quantitative dynamic tilt table test results. These tests show that
the system’'s lag is very low, and the accuracy is within 1 degree when a proper

calibration is completed. The prototype system update rate can be adjusted between 15
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and 55 Hz. It appears to be capable of tracking human motion in rea time. The fina
chapter of this thesis will review this research, reach some conclusions and make

recommendations for future work.
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VIIl. SUMMARY AND CONCLUSIONS

A. SUMMARY

Severd techniques exist to track human motion and many research efforts have
addressed body tracking systems and orientation filters. The most commonly used
method for defining orientation is Euler angles. Motion tracking systems using Euler
angles are not capable of tracking objects in all orientations due to gimba lock
singularities. An alternative method, the use of unit quaternions, has been gaining
popularity in the graphics community since mid 80's. A quaternion based attitude
estimation filter has been proposed to overcome these singularities. This thesis described
the development and testing of a prototype inertial tracking system based on a quaternion
attitude estimation filter. Test results indicate that human motions could be efficiently
tracked with this system.

B. CONCLUSIONS

This research continues that begun in [HENA97]. The presented system is the
first inertial body tracking system based on quaternions [DURL 95, SKOP96]. Using unit
guaternions prevented the singularities and increased computational efficiency.

The system resolution is very good, and accuracy is within 1 degree. Robustness
and registration are very good in a homogenous environment, but relatively strong
magnetic fields will effect the system. Since the system is sourceless, it can be assumed
that there is no limit to sociability in a very large homogenous environment. The
prototype sensor is smal and it is light. This makes the system user friendly and easy to

use. Smaller sensor blocks, wristwatch size, could be produced with smaller sensors in
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the near future. The system was constructed using low cost, off the shelf components.
System cost and size would be reduced with mass production
C. RECOMMENDATIONS FOR FUTURE WORK

The system will be used as a part of the on going body suit project [ZY DA97] and
could aso be used in the NPS AUV project [YUN97]. The system and multiple sensor
blocks can be combined with the quaternion human model [USTAQ99] for rea time
human motion tracking applications. Using multiple sensor blocks will decrease the
system performance on a single processor system. To prevent this, a multiprocessor
architecture should be developed for full human body motion tracking applications.
Tracking humans in large environments will require a wireless tracking system.
Developing a wireless tracking system architecture should be considered.

The system has a self-calibrating module or the scalar numbers can be hard coded
for system calibration. An improved calibration procedure should be developed to
achieve better results. The filter can be used with other types of sensors. Integrating

better sensors into the system should be considered.
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APPENDIX A. DERIVATION OF X MATRIX

The X matrix is defined by (Eg. 4.13) as

efy; U
T =ela (Eq. A.1)

X ~
eﬂqj g4x6

The elements of the 4x6 matrix come from the partial derivatives of the

components of the computed measurement vector, y(q) , given by (Eg. 4.8)

y(@) = (4" "mq,q" "na) (Eq. A.2)

and as given in (Eg. 4.6) and (Eq. 4.7)
h=¢ *mg (Eq. A.3)
b=6'ng (Eq. A.4)

Therefore, taking the partial derivative of this equation with respect to ¢y, the
result is

v _ 1

-1 -1
— = (9 'mj4,§ "ng (Eq. A.5)
o .”qo(q mg,q “ng)

Applying the product rule to (Eg. A.5), it follows that

-1 o a1 . 0
v _Ja~ o .1 T894 o 1 962
— = F— +d M——,——ng+ n——: Eg. A.6
do &Tdo a ido * Tdo 4+ fdo (Ea. AD)
where
ﬂfj =(1000) (Eq. A.7)
Tdo
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and

ﬁ%::(loom (Eq. A.9)
Likewise, for g4,9,, and gs;
JZ i ?1?% mi+q 1‘1”; 'ﬂ%l nq+¢ 1“%2 (Eq. A9)
‘H‘lliyz ) ?ﬂqd-zl mg+q ﬂ?z ’11%-21 nd+d 'n ﬂﬂi g (Eq. A.10)
ﬂﬂgg _ ?1% '31 mj+q§ 1mﬂﬂqq3 ’ﬂﬂqq-: ng+q n %2 (Eq. A.11)

where the corresponding quaternion partial derivatives are
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and, the partial derivatives of the inverse are given by

76

76t

4

1

161

A

G2

S

ds

(0 -100)

(00 -10)

(000 -1)

88

(Eq. A.12)

(Eq. A.13)

(Eq. A.14)

(Eq. A.15)

(Eq. A.16)

(Eq. A.17)



The partia derivatives as defined in (Eq. A.6), (Eq. A.9), (Eq. A.10), and (Eq.

A.11) result in the partial derivatives of the m and n vectors with respect to Gg,G,4p,

and §3, respectively.

Taking the results computed above, the X matrix can be constructed as follows

ey

Ty Ty Ty u

X = é— - ~ ~
&do fidy Thp Tds v,

(Eg. A.18)

Note that the partial derivatives are column vectors in the X matrix, and that the

transpose of X is required when used in the filter. Thus, (Eg. A.18) becomes [HENA97]
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Then the transpose of the X matrix is

éqhy
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s Tby fbo, fbg U

€
aldo

4o
ﬂﬁz

do Mdo Tdo 'ﬂﬁog
s 16 16, Tbs

(7
T,
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APPENDIX B. ......... DERIVATION OF GRADIENT OF THE ERROR

CRITERION FUNCTION

In the filter, the gradient of the error criterion function f (§),is given by (Eq.4.17)

ot I 9 O

~ T
Nf (§)=¢cc——=———7+ =2X j Eqg. B.1
(9) gﬂqoﬂqlﬂqzﬂq3z 4x68(0) 6x1 (Eq. B.1)
where f (§),is given by (Eq.4.14)
f(G)1x1 = (6) " 1x68(8) 61 (Eq. B.2)

In order to simplify the derivation of the gradient, consider the the case of one

dimensional orientation vectors, where the measured vector is yg =(h;) and the
calculated vector is y(§) = () . The error then becomes

e(d) =hy -y (Eq. B.3)

f(4)=e? =(h - b)? =hf - 2yhy +hf (Eq. B.4)
Taking the partial derivative of (Eq.B.4) with respect to ¢ yields

f . fh h
I op T 1’111 e(@  (Eq BS5)
do

h _,Th
Tdo o

- 2h_'|_—

- —2(hy-hy)=2
fao 214, M

Likewise, for the partial derivatives with respect to ¢;,4,, and Gz [HENA97].
Thus, extending this result to 6 dimensional case and arranging the partial derivativesin

matrix form yields the derivation of the gradient of the error criterion function.

91



The modeling error can be written

€y - hy U
e. u
&y, - hzl]
e(d) = g“s h3u
% - by o
ool
gs- bz

(Eq. B.6)

Based on this error, f () becomes

f(8) = (- )% +(hy - hp)? +(hg- hg)? +(by - by)? +(B, - by)? +(b3- by)? (Eq. B.7)

Taking the partial derivative of (Eq. B.7) with respect to ¢

f
‘ITﬂqO_'ITq (- )2+ (R - )2 + (g - ) + (B - by)? + (B - b)? +(B3 - by)?) (Eq. BY)
we obtain
&y - hy U
e
éhz - hzg
o e T T 57 ! (Eq. B9)

fido eﬂ% 9o T8 Tdo Tho Mdopzb;- by -
&, - b, U
P2 P2y
&s- b3 g

Rows two through four are produced by taking the partial derivative off (§) with respect

c

to .62, and gs.
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Thus,
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The by T, b3 U |

é -
aldo Tdo
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w

which can be rewritten [BACH97A]

T4; 943 163 Y43 d

Rif (6) = 2X "e(q)

where the transpose of the X matrix is as defined in Appendix A.
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A.

APPENDI X C. SOURCE CODE

QAEF.H

//*******************************************************************

//*******************************************************************

11
/1
11
/1
11
11
11
11
11
11
/1
11
/1
11
11
11
11
11
11
/1
11

File . Qaef.h
Aut hor : il deniz DUMAN
Project Name : Quaternion Attitude Estimation Filter

Operating Environment : MsS-W ndows 95
Conmpiler : Visual C++ 5.0

Date : 01/09/99

Description :

- Header file for Qaef

I nputs : None

Cut puts : None

Process : None

Assunption : None

War ni ngs during conpliation : None

//*******************************************************************

//*******************************************************************

#i fndef _ QAEF_H
#define _ QAEF_H _

#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>

#i ncl ude "converter. h"
#i nclude "filter.h"

#i ncl ude "quaternion. h"

cl ass Qaef {

publi c:

/] default constructor
Qaef (int converterNo ,unsigned int transferBufSize = 400,
unsi gned int kValue = 150);

/] destructor

~Qaef () ;

/1l starts the filtering process
double start();
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/1 stops the converter
voi d stop();

/'l returns the estimted quaternion
Quat ernion getResult();

private:

/1 AD converter
Converter * gConverter;

/[l Filter
Filter * gFilter;

}s
#endi f

/1 end of file Qaef.h
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B.

QAEF.CPP

//*******************************************************************

//*******************************************************************

/1
11
11
11
11
11
11
/1
11
/1
11
11
11
11
11
11
/1
11
/1
11
11
11
11
11
11

#i
#i
#i
#i
#i
#i

File . Qaef.cpp
Aut hor : il deniz DUVAN
Project Name : Quaternion Attitude Estimation Filter

Operating Environment : MS-W ndows 95
Conpiler : Visual C++ 5.0
Date : 01/09/99

Description :

- Source file for Qaef

- Initializes A/D converter and filter
- Returns estinmated result

I nputs : None

Qut puts : None

Process . None

Assunption : None

War ni ngs during conpliation : None

LR R R R R R R R R R R R R R EE R R R EREE RS RE R E R R R

LR R R R R R R R R R R R R R EE R R R EREE RS RE R E R R R

ncl ude <stdi o. h>

ncl ude <stdlib. h>

ncl ude "qgaef.h"

ncl ude "converter.h"
nclude "filter.h"

ncl ude "quaternion. h"

Functi on: Qaef ()

Return Val ue: None

Par anet er s: None

Description: Default constructor

Qaef:: Qaef (i nt deviceNo, unsigned int bufSize, unsigned int k)
:gConverter (new Converter(deviceNo, buf Si ze)),
gFilter (new Filter(qConverter, Kk))

{

}//end Constructor
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/1 Function: ~Qaef ()
/1 Return Value: None
/'l Paraneters: None
/1 Description: Destructor
e e
Qaef: : ~Qaef ()
{
gConvert er->~Converter();
gFilter->~Filter();
cerr<<"QAEF del et ed" <<endI
}// end destructor
L e i
/1 Function: start ()
/1 Return Value: None
/1 Paraneters: None
/1 Description: Starts filtering process
e R T
doubl e Qaef::start()
{
gConverter->start();
return gqFilter->start();
}//end start()
R
/'l Function: get Resul t ()
/!l Return Value: Quaternion - estimated result
/1 Paraneters: None
/1 Description: Returns the estimated result
L e e

Quat erni on Qaef::getResult()

{

return gqFilter->estimateRotation();

}/ ! end getResult()

11
11
11
11

Functi on: st op()

Return Val ue: None

Par anet er s: None

Descri ption: Stops the converter

void Qaef::stop()

{

gConverter->stop();
return;

}// end stop

11

end of file Qaef.cpp
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C. FILTER.H

//*******************************************************************

//*******************************************************************

/1

Il File Filter.h

/1 Aut hor il deni z DUMAN

/1 Project Name : Quaternion Attitude Estimation Filter
/1 Operating Environment MS- W ndows 95
/1 Conpiler : Visual C++ 5.0

/] Date : 01/09/99

/1

/1 Description :

/1

/1l - Header file for Filter.cpp
/1 - Filters data

/1 - Estimates an result

/1

/1 Inputs : None

/1

/'l Qutputs : None

/1

/1 Process : None

/1

/1 Assunption : None

/1

/1 Warnings during conpliation : None

//*******************************************************************

//*******************************************************************

#ifndef _ FILTER H
#define _ FILTER H

#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>

#i nclude "matri x. h"

#i ncl ude "quaternion. h"
#i ncl ude "sanpl er.h”

#i ncl ude "converter. h"

class Filter/{

/1 overl oaded operator<<

friend ostream &operat or<<(ostream &, const
publi c:

/1 default constructor

Filter (Converter *, unsigned int k = 5);

/] destructor
~Filter();

/1 copy constructor
Filter (const Filter &;
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/1l starts filtering process
double start();

/'l estimates a new rotation
Quat erni on estimateRotation();

private:

Sanmpl er *nySanpler; [/ ny server sanpler

Quat erni on n, /1 Earth's unit magnetic field
m [l Earth's unit gravity
h, /1 local vertical from accel eroneter
b, /'l local magnetic field from nagnetoneter
bw, /1l rate , fromangular rate sensor
del t aq, /1 Gauss Newton iteration
gDot , /1 derivation of angular rate
hHat, bHat, // in conputed nmeasurenent vector
gHat ; /1 estimated quaternion

/1 partial derivatives

const Quaterni on QHATZERO
QHATONE, ONEI NV,
QHATTWO, TWO NV,
HATTHREE, THREEI NV;

Matri x X, /1 X matrix

xTranspose, /1 X transpose matrix

errorgHat, /1 error g hat

error Transpose, /] error transpose

tenp, t enpl; /'l tenmp matrices for cal cul ations
int tau; //for bias error

bool selfCalibration; // for Sanpler to find zero | evel voltages

doubl e sanpl eWei ght, /1l for bias error
bi asWei ght
del t aT, /1 time between two sanpling in seconds
* biasError, /'l bias errors for angular rates
* sanpl es, /'l received readings from sanpler
kVal ue, /1 k value, will be a constant

errorMagnetitude; // error's nmagnetitude

/1 gets new sanpl ed data from sanpl er
voi d get NewSanpl e();

/] calculates initial bias error
void initial BiasError();

/'l corrects bias error by low pass filtering
voi d correctBiasError();

/1l sets the quaternions with new data
voi d setEl ements();
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// calculates error
void calcul ateError();

/'l creates X Transpose matrix
voi d creat eXTranspose();

/1l calculates delta g quaternion
voi d cal cul ateDel taQ();

/1 cal cul ates gDot quaternion
voi d cal cul at eqDot () ;

[/l calculates final result
voi d cal cul ateResul t ();

/1 converts the final matrix solution in to quaternion
voi d convertToDel taq(Matrix &)

// wites results into a file
voi d |l ogResults();

b

#endi f

// end of file Filter.h
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D. FILTER.CPP

//*******************************************************************

//*******************************************************************

/1
Il File : Filter.cpp
// Author : ildeniz DUVAN

/1 Project Name : Quaternion Attitude Estimation Filter
/1 Operating Environment : MS-W ndows 95
/1 Conpiler : Visual C++ 5.0

/] Date : 01/09/99

/1

/1 Description :

/1

/1 - Source file for Filter

/1l - Filters data

/1 - Estimates an result

/1

/1 Inputs : None

/1

/'l Qutputs : None

/1

/1 Process : None

/1

/1 Assunption : None

/1

/1 Warnings during conpliation : None

//*******************************************************************

//*******************************************************************

#i ncl ude <mat h. h>

#i ncl ude <string. h>

#i ncl ude <assert. h>

#i ncl ude <sys/tinmeb. h>
#i ncl ude <tine. h>

#i ncl ude <fstream h>
#i ncl ude <stdlib. h>

#i nclude "filter.h"

#i ncl ude "matri x. h"

#i ncl ude "quaternion. h"
#i ncl ude "sanpl er.h"

#i ncl ude "util.h"

of stream fresul ts;

R T
/'l Function: Filter()

/1 Return Value: None

/1l Paraneters: None

/1 Description: Default constructor

I e T

Filter::Filter (Converter * con, unsigned int kVval)

:n(Quaternion ("n", 0, 0, 60, -15)),//for Monterey,CA in Euler form
m Quaternion ("ni",0.0,0.0,0.0,-1.0)),

h(Quaternion ("h")),
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b(Quaternion ("b")),

bw( Quat er ni on("bw")),

deltaq(Quaternion ("delta q")),

gDot (Quaternion ("qg dot")),

hHat (Quaternion ("h hat")),

bHat (Quaternion ("b hat")),

gHat (Quaternion ("Result",1.0,0.0,0.0,0.0)
HATZERO( Quat er ni on("ghat zero",1.0,0.0,0
QHATONE( Quat erni on ("ghat one",0.0,1.0,0.0
ONEIl NV( Quat erni on ("ghat one inv",0.0,-1.0,
QHATTWO( Quat er ni on ("ghat two", 0. 0 0.0,1.0
TWOI NV( Quat ernion ("ghat two inv",0.0,0.0,-
HATTHREE( Quat erni on ("qghat three",0.0,0.0, ,
THREEI NV( Quat erni on ("ghat three inv",0.0,O0. 0,0 o,
x(Matrix ("X',6,4)),

xTranspose(Matri x ("X Transpose", 4, 6)),

errorqHat (Matrix ("error q hat",6,1)),

error Transpose(Matri x ("Error Transpose",1,6)),
error Magnetitude(0.0),

temp (Matrix ("temp", 4,4)),

templ (Matrix ("tenpl", 4,1)),

tau(100), deltaT(0.1), kVval ue(kval),
sanpl eWei ght (0. 0), bi asWei ght (0. 0),
selfCalibration(true) // sanpler will find zero | eve

{

witeFile(fresults,"FilterResults.dat");

ny Sanpl er new Sanpl er (con);

bi asError = new double [3];
assert (biasError !=0);

sanpl es = new double [9];
assert (sanples !=0);

for (int i=0;i<3;i++){
bi asError [i] = 0.0;
}

for (int k=0;k<9; k++){
sanmples [k] = 0.0;

}

gHat . normal i ze();

/1 find the Earth's unit magnetic field , n

vol t ages

Quaternion tt("tt",0,1,0,0); // just a tenp quaternion

n=n.toQuaternion(); // convert n to Quaternion
n=n.rotation(tt); // rotate n with (0 1 0 0)
/| cerr<<n<<end|

gHat . normal i ze();

/1 will be set to b

n. set Quaterni on(0.0,0.79 ,0.0055 ,0.61);
/In.normalize();
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cout <<nk<endl

cout <<"K = "<<kVal ue<<endl
cout<<"initial "<<gHat<<endl
cout <<"Filter : Initialized "<<endl

}//end Constructor

e LR
/1 Function: ~Filter()

/1 Return Value: None

/'l Paraneters: None

/'l Description: Destruct or
e e
Filter::~Filter()

{

cout <<"deleting Filter"<<endl
delete [] sanpl es;

delete [] biasError;
fresults.close();

my Sanpl er - >~Sanpl er () ;

}//end destructor

R e e
/'l Function: Filter(Filter &)

/1 Return Value: None

/1l Paraneters: Filter

/1 Description: Copy constructor
e L R
Filter::Filter(const Filter &F)

{

cerr <<"copy constructor NOT inplenented"
}// end copy constructor

e R T
/1 Function: start()

/!l Return Value: delta t - double

/1 Paraneters: None

/1 Description: Starts the filtering process,calculates the initia
/1 bi as error

e LR
double Filter::start()

{

cout << "\nFilter : Filtering started"<<endl
my Sanpl er - >f i ndZer oVol t ages(sel f Cal i brati on);
get NewSanpl e() ;

initial BiasError();

correctBiasError();
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set El enent s();

/] sets Earth's magnetic field to the first reading
n=b;

cal cul ateError();

creat eXTranspose();

cal cul ateDel taQ();

cal cul at eqDot () ;

cal cul at eResul t ();

/1 | ogResul ts();

return deltaT;
}//end start()

/'l Function: esti mat eRot ati on()
/1 Return Value: qgHat - quaternion - estimated result
/1 Paraneters: None

/1 Description: Estimate new rotation, nust call itself for

/1 conti nuous estinmation

e e e
Quaternion Filter::estimteRotation()

{

get NewSanpl e() ;

correctBiasError();

set El ements();

cal cul ateError();

creat eXTranspose();

cal cul ateDel taQ();

cal cul at eqDot () ;

cal cul at eResul t () ;
/1 | ogResul ts();

return qHat,;
}// end estimteRotation()
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/1 Function: initial BiasError()

/1 Return Value: None

/'l Paraneters: None

/1 Description: Calculates initial bias errors and sets them
e e
void Filter::initialBiasError()

{

i nt bi asNunmber = tau/10;

/1 check for al pha
if (((deltaT * kValue) < 1.0) && ((deltaT * kValue) > 0.0)){
cerr << "Alpha is "<<(deltaT*kVal ue)<<endl
lelse {
cerr <<"WARNING Filter : Alpha is "<< (deltaT*kVal ue)
<< "deltaT "<<deltaT<<" K " <<kVal ue<<endl
}
for (int i=0;i<biasNunmber;i++){
bi asError[ 0] += sanpl es[0]/biasNunber; //angular rate p
bi asError[ 1] += sanples[1]/biasNunmber; //angular rate q
bi asError[ 2] += sanples[2]/biasNunmber; //angular rate r
}
bi asError[ 0]
bi asError[ 1]
bi asError|[ 2]

-biasError[0];
-biasError[1];
-biasError[2];

return;
}// end initialBiasError()

e e T
/1 Function: correctBiasError()

/1 Return Value: None

/1 Paraneters: None

/1 Description: For every reading corrects angular rates with the
/1 initial bias error

L e e LR
void Filter::correctBiasError()

{

sanpl eWei ght = deltaT/tau;
bi asWei ght = 1-sanpl eWi ght;

for (int i=0;i<3;i++){
sanpl es[i] += (biasWight * biasError[i])-(sanpl eWei ght
* sanples [i]);
}

return;
}// end correctBiasError()
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/1 Function: get NewSanpl e()
/1 Return Value: None
/'l Paraneters: None
/1 Description: Calls Sanpler to get new averaged reading
e e
void Filter::get NewSanpl e()
{
nmy Sanpl er - >get Dat a( sanpl es, deltaT);
/*
for (int k=0;k<9; k++){
if (k==0) cerr<<"\nBody Rates [ "
if (k==3) cerr<<"Accel eroneter [ "
if (k==6) cerr<<"Magnet oneter [";
cerr<<sanpl es[ k] <<" ";
if ((k==2) || (k==5)){
cerr<<"] "<<endl
}
}
cerr<<"]"<<endl
*/

return;
}/ !/ end get NewSanpl e()

e LR
/1 Function: set El enent s()

/1 Return Value: None

[l Paraneters: None

/'l Description: set b, h,bw with new readi ngs
e e
void Filter::setEl enents()

{

/lreset angular rates
bw. set Quat erni on( 0.0, sanples[0], sanples[1l], sanples[2]);

//reset accel erometer measurenents
h. set Quat er ni on(0. 0, sanpl es[ 3], sanpl es[ 4], sanpl es[ 5] );
h. normal i ze();

//reset nagnetoneter neasurenents
b. set Quat erni on(0. 0, sanpl es[ 6], sanpl es[ 7], sanpl es[ 8] ) ;
b. normalize();

return,;
}// end setEl enents()
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/1 Function: cal cul ateError ()
/1 Return Value: None
/'l Paraneters: None
/1 Description: Cal cul ates error vector
e e
void Filter::calculateError()
{
static Quaternion errH("error h");
static Quaternion errB("error b");
hHat = qHat.toBody(n;
bHat = qHat.toBody(n);
errH = hHat - h;
errB = bHat - b;

errorMagnetitude = errH. dot Product(errH) + errB. dotProduct(errB);
errorqgHat.insertCol Quaternion ( (hHat-h) , (bHat-b) , 0);

return;
}// end cal cul ateError()

e L R
/1 Function: creat eXTranspose()

/1 Return Value: None

/1 Paraneters: None

/1 Description: Creates X Transpose matri x

e e e
void Filter::createXTranspose()

{

xTranspose. i nsert RowQuat er ni on(m parti al Deri vati ve(gHat, QHATZERQG,
HATZERO), n. parti al Deri vati ve( gHat , QHATZERO, QHATZERO) , 0);

xTranspose. i nsert RowQuat erni on(m parti al Deri vati ve(gHat , QHATONE,
ONEI NV) , n.partial Derivative(qgHat, QHATONE, ONEI NV) , 1);

xTranspose. i nsert RowQuat erni on(m parti al Deri vati ve(qgHat, QHATTWO,
TWO NV) , n.partial Derivative(qgHat, QHATTWO, TWOI NV) , 2);

xTranspose. i nsert RowQuat erni on(m parti al Deri vati ve(qgHat , QHATTHREE

, THREEI NV) , n.partial Derivative(qHat, QHATTHREE, THREEI NV) , 3);

return,;

}// end createXTranspose()

R e e
/1 Function: cal cul ateDel taQ)()

/1 Return Value: None

/1 Paraneters: None

/1 Description: Calculates delta g in matrix form

e e e
void Filter::calcul ateDeltaQ()

{

xTranspose. transpose(Xx);
tenmp = (xTranspose * Xx);
tenmp tenmp.invert();
templ = tenp * (xTranspose*errorqgHat);
convert ToDel taq(tenpl);
return;
}/ !/ end cal cul ateDel taQ()
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/1 Function: convert ToDel t aQ))

/1 Return Value: None

/'l Paraneters: MAT - calculated delta g matrix

/1 Description: Converts deltaQ 4x1 in to quaternion
e e
void Filter::convertToDeltaq(Matrix & MAT)

{

i f ((MAT.get Row)==4) && (MAT. getCol ()==1)){
del t aq. set Quat er ni on( MAT. get El ement (0, 0) , MAT. get El enent (1, 0),

MAT. get El enent (2, 0), MAT. get El enent (3, 0));
deltaqg = (-1 * kval ue)*del t aq;
} else {
cerr <<"Error in Filter: matrix can not"
<<" be converted into quaternion"<<endl;

}

return,;
}// end convert ToDel t aQ))

R e e
/1 Function: cal cul at eqDot ()

/1 Return Value: None

/1l Paraneters: None

/1 Description: Cal cul at es gDot quat erni on

e e e
void Filter::cal cul at egDot ()

{

gbDot = 0.5 *(gHat * bw);
return;
}/ !/ end cal cul at eqDot ()

L e e LR
/1 Function: cal cul at eResul t ()

/1 Return Value: None

/'l Paraneters: None

/1 Description: Finds the estimted result

L e i
void Filter::calcul ateResult ()

{

gHat = gHat + ((qDot * deltaT) + (deltaT * deltaq));
gHat . normal i ze();

return;
}// end cal cul ateResult ()
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/1 Function: cal cul at eResul t ()
/1 Return Value: None
/'l Paraneters: None
/1 Description: Finds the estimated result
e e
void Filter::|logResults()
{
static int steps = 1;
fresul t s<<steps<<" "<<qgHat<<" Error = "<<errorMgnetitude<<endl
St eps++;
return;
}
L e e
/'l Function: (friend) operator<<()
/1 Return Val ue: ostream object
/1l Paraneters: out put - ostream obj ect
/1 g - Filter to print
/'l Description: Prints the Filter in a form should be witten out
/1 of class
i R
ostream &operat or <<(ostream &output, const Filter &Qq)
{

output <<'['<<"Filter's nmembers"<<']'<<q.n<<qg. nx<q. h<<q. b<<
g. bw<<q. del t ag<<g. gbot <<g. hHat <<
g. bHat <<q. gHat <<g. x<<g. XxTr anspose<<
g. errorgHat <<q. error Transpose<<endl ;

return output;
}// end operator<<

/1end of file Filter.cpp
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E. CONVERTER.H

//*******************************************************************

//*******************************************************************

/1
/1 File . Converter.h
/1 Author : ildeniz DUMAN

/1 Project Name : Quaternion Attitude Estimation Filter
/1 Operating Environment : MS-W ndows 95
/1 Conpiler : Visual C++ 5.0

/1 Date : 01/09/99

/1

/1 Description :

/1

/1l - Source file for Converter

/'l - Receives data from sensors

/1 - Updates the double buffer

/1

/1 Inputs : None

/1

/'l Qutputs : None

/1

/1 Process : None

/1

/1 Assunption : None

/1

/1 Warnings during conpliation : None

//*******************************************************************

//*******************************************************************

#i fndef __CONVERTER_H__
#define __CONVERTER H__

#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>

#defi ne M_PI 3.14159265358979323846
#define GRAVITY 32.2185 [//feet per second
cl ass Converter{

/1 overl oaded operator<<
friend ostream &operator<<(ostream & const Converter &)

publi c:

/] default constructor
Converter (int deviceNum unsigned int rows=300);

/'l destructor
~Converter();

/'l starts the converter
void start();
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/1l checks if half buffer
bool isHal f Ready();

i s ready

/! transfers half of the double buffer

voi d transferData(short

*);

/1l stops the converter
voi d stop();

/1l passes the configuration data

voi d get Confi gDat a(unsi gned short &, unsigned short & int & int &,

double &);
private:
| ong bufferSize, /1l buffer size
ti meQut; /1 time out
i nt devi ceNumber; /1 device numnber
short * channel Vector, // channels
* gai nVector, /'l gains for channels
* doubl eBuf fer; /1 doubl e buffer
doubl e rate; /1 scan rate
short status, /1 returned status of converter
nunber Of Channel s, // nunber of channels
hal f Ready, /1 half ready
dagSt op, /1 DAQ stop
sanpl eT_Base, /'l sanple tine base
scanT_Base, /1l scan tinme base
units, /1 used units during scanning
dBEnabl e, /1 flag, double buffer enable
i nput Mbde, /'l converter input node
i nput Range, /1 input range
pol arity, /1 input polarity
drive, /1 specifies drive
gai n; /1 gain for scanning
/1l data points to tranfer to transfer buffer
unsi gned | ong poi ntsTransfer
unsi gned short sanpl el nterval, /1l sanple interva
scanl nterval, /1 scan interva
maxRange; /1 max readi ng range
bool ready; /1l flag to indicate half ready
/1 initialize converter

void initConverter();

/'l calibrates converter
void calibrate();
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/] sets events
voi d set Events();

/! restarts the converter
void reStart();

/1l prints the initial values
void printlnitial Values();

1

#endi f

/! end of file Converter.h
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F. CONVERTER.CPP

//*********************************************************************

//*********************************************************************

/1

Il File Converter.cpp

/1 Aut hor il deni z DUMAN

/1 Project Name : Quaternion Attitude Estimation Filter
/1 Operating Environment MS- W ndows 95
/1 Conpiler : Visual C++ 5.0

/1 Date : 01/09/99

/1

/1 Description :

/1

/1 - Source file for Converter class

/'l - Receives data from sensors

/1 - Updates the double buffer with this data
/1l - Transmts the half buffer

/1

/1 Inputs : None

/1

/1 Qutputs : None

/1

/1 Process : None

/1

/1l Assunption : None

/1

/1 Warnings during conpliation : None

//*******************************************************************

//*******************************************************************

#i ncl ude <assert. h>

#i ncl ude <i omani p. h>

#i ncl ude "converter. h"

#i ncl ude "nidaqg. h"

#i ncl ude "ni dagcns. h"

#i nclude "util.h"

A I i P
/1 Function: Converter()

/1 Return Value: None

/] Paranmeters: None

/1 Description: Default constructor

A i e

devi ceNo,
/] to scan

Converter:: Converter(int
nunmber Of Channel s(9),

unsi gned i nt rowNo)

ti meQut (180), /1 time out val ue

status(0), /1l initial status

sanpl eT_Base(-3), // board resolution,will be overwitten by DAQ Rate
scanT_Base(-3), /1 20 KHz

sanpl el nterval (100), /1 will be overwitten by DAQ Rate

scanl nterval (0), /1 no tinme interval between conversions
dBEnabl e(1), /1 enabl e doubl e bufferring

hal f Ready(0), /1 check for half ready
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dagSt op(0), /1 check if DAQ stopped

rate (20000), /1 DAQ rate

i nput Mode(1), // 0 - DFF, 1 - RSE, 2 - NRSE

i nput Range(0) /1 (ignored)

polarity(0), /1 0 - -10/+10 1- 0/ +10
drive(1), /1l drive Al sense to onboard ground
gai n(2), /'l channel s have the sane gain
ready (false) /1 flag for half ready

if ((rowNo > 0) && (deviceNo > 0)){
cerr<<" Please wait while calibrating the converter
#" <<devi ceNo<<end|

devi ceNunber = devi ceNo; /'l device nunber
/!l units used to express rate 0 - pts/sec ; 1 - sec/pts
uni t s=0;

/!l the size of the doubl e buffer
bufferSi ze = rowNo * nunber Of Channel s * 2;

/1l points to transfer to transfer buffer
poi nt sTransfer = bufferSize / 2;

/1 channels to scan
channel Vector = new short [ nunber O Channel s];
assert (channel Vector != 0);

/1l gains per channe
gai nVect or = new short [nunber O Channel s];
assert (gainVector != 0);

/1 double buffer, cirricular buffer
doubl eBuf fer = new short [bufferSize];
assert (doubl eBuffer !'= 0);

for (int i=0;i<nunmberCf Channel s;i ++){
gai nVector[i]=1;
}
switch (polarity){
case O:
maxRange = 32767,
br eak;
case 1:
maxRange = 32767 * 2 + 1;
br eak;
defaul t:
cerr<<"ERROR : Unknown polarity\n";
br eak;

calibrate();
i nitConverter();
printlnitialValues();
}el sef
cerr << "Converter can not initialized,
<< "buffer row no nust be greater than 0"<<endl

}
}//end Constructor

115



/1 Function: ~Converter()
/1 Return Value: None
/'l Paraneters: None
/1 Description: Destructor
e e
Converter::~Converter()
{
stop();

del ete [] doubl eBuffer

delete [] channel Vector

del ete [] gai nVector

cout <<"Converter del eted"<<endl
}// end destructor

L e e
/'l Function: i nitConverter()

/1 Return Value: None

[l Paraneters: None

/1 Description: Initialize the converter
e e T
voi d Converter::initConverter()

{

/1 init channels with physical nunbers on the board
channel Vect or[ 0] =0;
channel Vect or[ 1] =1;
channel Vect or [ 2] =2;
channel Vect or [ 3] =3;
channel Vect or [ 4] =4;
channel Vect or [ 5] =5;
channel Vect or [ 6] =6;
channel Vector[ 7] =7;
channel Vect or [ 8] =8;

/1l init gains for channels

for (int i=0;i<nunmberCf Channel s;i ++){
gai nVector[i] =gai n;

}

/1 Configure converter to software triggered and to
/1 use on board cl ock
status = DAQ Config (deviceNunber , 0, 0);
if (status == 0){
cerr <<"Converter configured"<<endl
} else {
cerr <<"Error : Configure\n";
}

/1l set Al values, they could be changed by
/1 the config utility software
status = Al _Configure (deviceNunber, -1, inputMde, inputRange,
polarity, drive);
if (status == 0){
cerr <<"Al configured"<<endl
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} else {
cerr <<"Error : Al_configure\n";
}

/1 Configure the tinme out
status = Ti neout _Config(devi ceNunber, tinmeQut);
if (status == 0){
cerr <<"time out set"<<endl
} else {
cerr <<"Error : Tinme out\n";
}

/'l Enabl e doubl e buffering operations
status = DAQ DB Confi g(devi ceNunber, dBEnabl e);
if (status == 0){
cerr <<"AD Converter initialized"<<endl
} else {
cerr <<status<<
}

cout <<"Converter : Initialized\n";
return ;
}//end initConverter()

Problemw th initialization\n";

L e i
/1 Function: calibrate()

/1 Return Value: None

/1 Paraneters: None

/1 Description: Cali brates the converter
R
voi d Converter::calibrate()

{

/'l calibrates the converter
status = Calibrate_E Series(devi ceNunber, ND_SELF_CALI BRATE
ND_USER_EEPROM AREA, 0.0);
if (status !'= 0){
cout <<"Error Calibrate\n";
cout <<status;
} else{
cout <<"\nConverter : AD Converter calibrated";
}

/'l calculates and sets the rate
status = DAQ Rate(rate, units, &sanpleT_Base, &sanplelnterval);
if (status !'= 0){
cerr <<"Error DAQ Rate\n";
cerr <<status;
el se {
cerr <<"\nRate cal cul ated \n";
}

status =0;
return ;
}//end calibrate()
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/1 Function: printlnitial Val ues()
/1 Return Value: None

/'l Paraneters: None

/1 Description: Prints the initial
e

void Converter::printlnitial Values()

{

cerr<<"Channel's gain is
switch (inputMde){

case O:
cerr<<"MNbde Differential\n";
br eak;
case 1:
cerr<<"Nbde Ref erenced Si ngl e Ended\n";
br eak;
case 2:
cerr<<"Mode Non Referenced Single Ended\n";
br eak;
defaul t:
cerr<<"Unknown Nbde\n";
br eak;
}
switch (polarity){
case O:
cerr <<"Polarity Bi pol ar -10/+10\n";
br eak;
case 1:
cerr<<"Polarity Uni pol ar 0/ +10\n";
br eak;
defaul t:
cerr<<"Unknown polarity\n";
br eak;
}
cerr <<"Device nunber "<<devi ceNumber

<<"\ nNunber

<<"\nTransfer buffer depth :
<<"\ nDoubl e buffer depth D

<<"\ nDoubl e buffer size

<<"\ nSanpl e Ti ne Base

<<"\ nSanpl e Interval

<<"\nSanpling rate

<<"\' nTi ne out

of Channel s

return;
} /1 end printlnitial Val ues()
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<<gai n<<endl ;

"<<nunber O Channel s

"<<(bufferSizel/ (2* nunber O Channel s))
<<( bufferSize/ nunmber O Channel s)

"<< bufferSize

"<<sanpl eT_Base

"<<sanpl el nt erval

" <<r at e/ nunber Of Channel s
"<<ti meQut <<endl ;



/1 Function: get Confi gDat a()

/1 Return Value: None

/'l Paraneters: None

/1 Description: Pass the values to the sanpler
e e

voi d Converter::getConfigData(unsigned short &range,
unsi gned short &myGain, int &hal fDepth,int

&bl ock, double & deltaTine)
{

doubl e tBase = 0.0, nano = 1/1000000000.0, micro = 1/1000000. 0;

range = maxRange;

myGai n = gain;

hal f Depth = (bufferSize / (nunber Of Channel s*2));

bl ock = nunber Of Channel s;

if (sanmpl eT_Base == -3){
tBase = 50 * nano;
lelse if (sanpleT_Base == -1){

t Base = 200 * nano;

lelse if (sanpleT_Base == 1){
t Base = m cro;

lelse if (sanpleT_Base == 2){
tBase = 10 * mcro;

}else if (sanpleT_Base == 3){
tBase = 100 * mcro;

}else if (sanpleT_Base == 4){
t Base = 0.001,;

}else if (sanpleT_Base == 5){
t Base = 0.01;

el se {
cerr << "ERROR Converter = Unknown sanple tine base\n";
t Base = 0.0;

Y deltaTine = 9 * hal fDepth * tBase;
deltaTine = 9 * hal fDepth / rate;
cerr<<"Update rate : "<< deltaTi ne<<" seconds\n";
return;

} /1 end get ConfigData()

R
/'l Function: start()

/1 Return Value: None

/1 Paraneters: None

/1 Description: Starts the data acquisition process
e LR
voi d Converter::start()

{

/!l set the scanning val ues
status = SCAN _Setup (devi ceNunber, nunber Of Channel s ,
channel Vect or, gai nVector);
if (status !'= 0){
cerr <<status<<" Error SCAN Setup\n";
}

/1 start the scanni ng process

status = SCAN Start (deviceNunber , doubl eBuffer, bufferSize,
sanpl eT_Base, sanplelnterval, scanT_Base, scanlnterval);
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if (status!=0){
cout <<status<<"Error SCAN_ Start\n";
}

status = O;
cerr <<"\nConverter : started\n";
return ;

}//end start()

L e e LR
/1 Function: st op()
/1 Return Value: None
/'l Paraneters: None
/1 Description: St ops the converter
L e i
voi d Converter::stop()
{
status = DAQ _Cl ear (devi ceNunber);
status = DAQ DB Confi g(devi ceNunber , 0);
status = Ti neout _Config(devi ceNunber, -1);
status = 0;
cout <<"Converter : Stoped and cl eared"<<endl
return ;
}//end stop()
L e e
/'l Function: set Event s()
/1 Return Value: None
[l Paraneters: None
/1 Description: Sets the events for converter
e e T
voi d Converter::setEvents()
{ /1 no events set
return ;
}//end setEvents()
L e e LR
/1 Function: i sHal f Ready()
/! Return Value: true if half ready
/'l Paraneters: None
/1 Description: First step to receive data from A/ D converter
L e i

bool Converter::isHal f Ready()

{

ready = fal se;
/1l check status
hal f Ready =0;
while (!((halfReady == 1) && (status == 0))){
/'l check for half ready
status = DAQ DB Hal f Ready(devi ceNunber, &hal f Ready, &daqStop);
if (status !'= 0){
cerr<<"Hal f ready error"<<endl
reStart();
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ready = true;
return ready;
}/lend isHal fready()

A T T T
/1 Function: transferDat a()

/1 Return Value: None

/] Paranmeters: None

/1 Description: Transfers the half buffer to transfer buffer

A i e
voi d Converter::transferData(short * trBuf)

{

/1 transfer data
status = DAQ DB _Transfer(devi ceNunber, trBuf,
&poi nt sTransf er, &daqsSt op) ;

if (status !'= 0){

cerr<<"Transfer error"<<endl;

reStart();
}
return ;

}//end transferData()

R i i P
/1 Function: reStart()
/1 Return Value: None
/] Paranmeters: None
/1 Description: Restarts the converter
R e I
void Converter::reStart()
{
cerr<<" RESTARTI NG Converter error status : "<<status<<endl;
status = DAQ _Cl ear (devi ceNunber);
start();
return;

} /1 end restart()

e i
/1 Function: (friend) operator<<()

/1 Return Value: ostream object

/'l Paraneters: out put - ostream obj ect

/1 C - Converter to print

/1 Description: Prints the Converter information

e e e

ostream &oper at or <<( ostream &out put, const Converter &C)

{

out put <<"\ nConverter : depth= "<<C bufferSize
<<endl ;

return output;

}// end operator<<
/1end of file Converter.cpp
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G. SAMPLER.H

//*******************************************************************

//*******************************************************************

/1
Il File . Sanpler.h
/1 Author : ildeniz DUMAN

/1 Project Name : Quaternion Attitude Estimation Filter
/1 Operating Environment : MS-W ndows 95
/1 Conpiler : Visual C++ 5.0

/] Date : 01/09/99

/1

/1 Description :

/1

/1 - Source file for Sanpler

/1l - Receives data from A/ D converter

/1l - Averages, scales and converts this data
/1 - Updates neasurements with these data
/1

/1 Inputs : None

/1

/1 Qutputs : None

/1

/1 Process : None

/1

/1l Assunption : None

/1

/1 Warnings during conpliation : None

//*******************************************************************

//*******************************************************************

#i fndef _ SAMPLER H
#define _ SAMPLER H

#i ncl ude <i ostream h>

#i ncl ude <i omani p. h>

#i ncl ude "converter. h"

#define MPI 3.14159265358979323846

#define GRAVITY 32.2185 //feet per second

cl ass Sanpl er{

/1 overl oaded operator<<
friend ostream &operator<<(ostream & const Sanmpler &);

public:

// default constructor
Sanpl er (Converter *);

/'l destructor
~Sanpl er();
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/1 finds zero level voltages for calibration
voi d findZeroVol tages(bool);

/'l get data from AD converter
voi d getDat a(doubl e *, double &);

private:

/1 AD converter
Converter * nyAD;

i nt bufferDepth, /1 transfer buffer depth
bl ockSi ze, /1 block, row size
buf ferSi ze, /1 transfer buffer size
count; /'l nunber of readings
unsi gned short nmaxReadi ng, /1 AD converter max reading
adGi n; /1 A/ D converter channel gain

/'l variabl es used for conversions

doubl e angXConver si on , angZConver si on , angYConversi on ,

accXConver si on, accYConver si on, accZConver si on,
magXConver si on, magYConver si on, magZConver si on,
angMul tiplier,accMultiplier,mgMiltiplier
sanpl eTi ne, /1l sanple tine

/'l zero level voltage val ues
angXV, angYV, angZV, accXV,

accYV, acczV, magXxV, magYV, nmagZzV,
/1 scalar nunmbers for calibration

angXScal ar, angYScal ar, angZScal ar, accXScal ar
accZScal ar, magXScal ar, magYScal ar, nagZScal ar

/'l voltage range for converter
vol t Range;

short * transferBuffer; /'l transfer buffer

/'l reads transfer buffer, updates readings
voi d readAndUpdat e(doubl e *);

/1l prints the transfer buffer
void printTransferBuffer();

/1 converts readings
doubl e convert(double , const int);

/'l hel per function of convert()
doubl e convertHel per (double , double , double);

}s

#endi f
/1 end of file Sanpler.h
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H.

SAMPLER.CPP

//*******************************************************************

//*******************************************************************

/1
11
11
11
11
11
11
/1
11
/1
11
11
11
11
11
11
/1
11
/1
11
11
11
11
11

File . Sanpl er.cpp
Aut hor : il deniz DUVAN
Project Name : Quaternion Attitude Estimation Filter

Operating Environment : MS-W ndows 95
Conpiler : Visual C++ 5.0
Date : 01/09/99

Description :

Source file for Sanpler

Recei ves data from A/ D converter

Aver ages, scales and converts this data
Updat es measurenents with these data

I nputs : None
Qut puts : None
Process : None
Assunption : None

War ni ngs during conpliation : None

//*******************************************************************

//*******************************************************************

#i ncl ude <assert. h>

#i ncl ude <i omani p. h>

#i ncl ude <fstream h>

#i ncl ude <sys/tinmeb. h>

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <tine. h>

#i ncl ude "sanpler.h”

#i ncl ude "util.h"

#i ncl ude "converter.h"

I e e R LR
/1 Function: Sanpl er ()

/1 Return Val ue: None

/'l Paraneters: None

/1 Description: Default constructor
e e
Sanpl er:: Sanpl er (Converter * con)

: myAD( con), /1 my AD Converter

count (0), /1 nunmber of sanples
maxReadi ng(0), /1 max converter reading
adGi n(0), /1 channel gain

vol t Range(10.0), // converter volt range
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angXV(2.573), angYV(1.65), angzV(2.21), // assign zero voltage |evels
accXV(2.515),accYV(2.45),acczV(2.5), [/ also will be calcul ated
magXV( 2. 45), magYV(2.51), magZV(2.509), // by findZeroVoltages()
angXScal ar (1. 0), angYScal ar (1. 0), angZScal ar(1.0), // scalar nunbers
accXScal ar(2.99), accYScal ar (2. 0),accZScalar(1.0), // for calibration
magXScal ar (1. 5), magYScal ar (1. 8), magZScal ar (1. 8)
/1 2.99 2.99 2.99 2.0 2.0 1.415 4.0 4.0 4.0 tested scalars
{

my AD- >get Conf i gDat a( maxReadi ng, adGai n, bufferDepth, bl ockSize,

sanpl eTi ne) ;

bufferSi ze = bufferDepth * bl ockSi ze;

transferBuffer = new short [bufferSize];

assert (transferBuffer !'= 0);

for (int k=0; k<bufferSize; k++){
transferBuffer[k] = 0;

}
angMWul tiplier
accvul tiplier

(90.0*(M_PI/180.0)) ;
(4 * GRAVITY);

magMWul ti plier 2.0
}//end Constructor
L e i
/1 Function: ~Sanpl er ()
/1 Return Value: None
/1 Paraneters: None
/1 Description: Destructor
R
Sanmpl er: : ~Sanpl er ()
{

cerr<<"del eti ng sanpl er"<<endl
delete [] transferBuffer
}// end destructor

e R T
/1 Function: findZer oVol t ages()

/!l Return Value: None

/1 Paraneters: selfCalibrate - bool - to make self calibration

/1 Description: Finds the zero | evel voltages, gets data from

/1 converter as many as repeat nunber
e LR
voi d Sanpl er::findZeroVoltages(bool selfcCalibrate)

{

if (selfCalibrate){
const int REPEAT = 5;
doubl e val ues[ 9] ={0. 0}, zeros[ REPEAT][6], total =0.0;
| ong sum = O;

for (int r=0;r<REPEAT;r++){

/1l check if half buffer is ready
while (!nyAD >i sHal f Ready()){;}
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[lcall transfer function of AD
nyAD- >t r ansf er Dat a(transferBuffer);

/1 find the averaged val ues
for (int i=0;i<blockSize;i++){
for (int j=0;j<bufferSize; j+=blockSize){
sum += transferBuffer[j+i];

}
val ues[i] = (sum (bufferDepth*1.0));
sum = O,

}

/1 fill zero level voltages matrix
for (int t=0;t<6;t++){
zeros[r][t]= voltRange * values[t] /
(maxReadi ng * adGai n);

zeros[r][5] *= (accMultiplier /
(accMultiplier + GRAVITY));
}

/1 find averaged zero |evel voltages
for (int k=0; k<6; k++){
for (int rr=0;rr<REPEAT;rr++){
total += zeros[rr][K];

}
zeros[ 0] [ k] = total/REPEAT,
t ot al =0. O;

}

/1 assign zero | evel voltages

angXV = zeros[0][0];
angYV = zeros[O0][1];
angzZV = zeros[O0][2];
accXV = zeros[0][3];
accYV = zeros[O0][4];
acczZV = zeros[O0][5];

/*
for (int tt=0;tt<6;tt++){

cerr<<" "<<zeros[O][tt];

}

*/

cerr<<"Sanpl er cal cul ated zero | evel voltages, by sanpling”
<<REPEAT<<" tinmes\n\n";
} else { // use hard coded val ues
cerr<<"\nSanpler is using hard coded values to calibrate\n";

}

/1 assign conversion values with zero | evel voltages

angXConver si on maxReadi ng * angXV * adGain / voltRange;// 2.573
angYConver si on maxReadi ng * angYV * adGain / voltRange; // 1.65
angZConver si on maxReadi ng * angZV * adGain / voltRange; // 2.21

accXConver si on maxReadi ng * accXV * adGain / voltRange; // 2.51
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accYConversion = maxReading * accYV * adGain / voltRange; // 2.46
accZConversion = maxReading * acczV * adGain / voltRange; // 2.48
magXConver si on = maxReadi ng * magXV * adGain / vol t Range;
magYConversi on = maxReadi ng * magYV * adGain / vol t Range;
magZConver si on = nmaxReadi ng * magzZV * adGain / vol t Range;
return;

} /1 end findZeroVoltages()

L e e LR

/1 Function: get Dat a()

/1 Return Value: None

/'l Paraneters: double n{] - neasurenents array fromFilter

/1 double & - delta t

/1 Description: Communi cates with converter, receives data into

/1 transfer buffer, avarages, scales, converts and

/1 updat es neasurenents

e LR

void Sanpler::getData (double * m, double & delta_T)

{
delta T = sanpl eTi ne;
/1 errors will be taken care of by Converter

whil e (! myAD >i sHal f Ready()){:}

//call transfer function of AD
myAD- >t r ansf er Dat a(t ransferBuffer);

[l printTransferBuffer();
readAndUpdat e( m ;
return;

}//end getData()

e LR
/1 Function: readAndUpdat e()

/1 Return Value: None

[l Paraneters: double ma[] - same array with the getData()

/'l Description: Reads transfer buffer, avarages data and updates

/1 measur enment s

L e i
voi d Sanpl er::readAndUpdat e(doubl e * mm)

{

l ong sum = O;

for (int i=0;i<blockSize;i++){
for (int j=0;j<bufferSize; j+=blockSize){
sum += transferBuffer[j+i];

}
ma[i] = convert((sum (bufferDepth*1.0)) , i);
sum = O;

}

return;

}/ !/ end readAndUpdat e()
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/1 Function: convert ()

/1l Return Value: converted value - double

/'l Paraneters: averaged - double - averaged val ue

/1 who -int - related reading no

/1 Description: Generic function, converts the averaged val ue hy

/1 usi ng rel ated nunbers

L e e

doubl e Sanpl er::convert (doubl e averaged , const int who)
{
doubl e result = 0.0;
swi tch (who) {
case O: /'l body rate p
result = convert Hel per(averaged, angXConversion
angMul tiplier * angXScal ar);
br eak;
case 1: /1 body rate q
result = convert Hel per(averaged, angYConversi on
angMul tiplier * angYScal ar);
br eak;
case 2: /1 body rate r
result = -convertHel per(averaged, angZConversi on
angMul tiplier * angZScal ar);
br eak;
case 3: /1 accel eroneter hl
result = -convertHel per(averaged, accXConversion
accMultiplier * accXScal ar);
br eak;
case 4: /1 accel eroneter h2
result = -convertHel per(averaged, accYConversion ,
accMul tiplier * accYScal ar);
br eak;
case 5: /1 accel eroneter h3
result = -convertHel per(averaged , acczZConversion
accMultiplier * accZScal ar);
br eak;
case 6: /1 magnet oneter bl
result = -convertHel per(averaged , magXConversi on
maghWul ti plier * magXScal ar);
br eak;
case 7: /1 magnet oneter b2
result = -convertHel per(averaged , magYConversion
magMul tiplier * nmagYScal ar) ;
br eak;
case 8: /1 magnet oneter b3
result = -convertHel per(averaged , magZConversi on
magMWul ti plier * magZScal ar);
br eak;
defaul t:
cout <<"Error in Sanpler: Check your data bl ock size\n";
br eak;
}
return result;
}// end convert ()
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/1 Function: convert Hel per ()

/1 Return Value: converted val ue

/'l Paraneters: t heNunber - double - averaged val ue

/1 adConversion - double - related conversi on number
/1 mult - double - related nmultiplier contains scalar
/1 Description: Generic function, converts the averaged val ue by

/1 usi ng rel ated nunbers

e LR

doubl e Sanpl er:: convert Hel per (doubl e theNunmber , doubl e adConversi on

doubl e nul t)
{
return (((theNunber - adConversion) / adConversion) * nult);
}// end convert Hel per ()

L e e
/'l Function: print TransferBuffer()

/1 Return Value: None

[l Paraneters: None

/1 Description: Prints the transfer buffer
e e T
voi d Sanpler::printTransferBuffer()

{

for (int i=0;i<bufferDepth;i++){
for (int j=0;]j<blockSize;j++){
cout <<set preci si on(15) <<transferBuffer[j+(i*bl ockSize)]<<" ";

}

cout <<endl

}

return;
}//end printTransferBuffer()

L e e
/1 Function: (friend) operator<<()

/1 Return Val ue: ostream object

/1l Paraneters: out put - ostream obj ect

11 S - sanpler to print

/'l Description: Prints the sanpler information
e e

ostream &oper at or <<(ostream &out put, const Sanpler &s)
{
out put <<"\nsanpl er : depth= "<<s. bufferDepth
<<" block size= "<<s. bl ockSi ze
<<" transfer buffer size= "<<s.bufferSize
<<" current counter= "<<s.count <<endl

return output;

}// end operator<<
/1end of file Sanpl er.cpp
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l. MATRIX.H

//*******************************************************************

//*******************************************************************

/1
/1 File . Matrix.h
/1 Author : ildeniz DUMAN

/1 Project Name : Matrix Attitude Estimation Filter
/1 Operating Environment : MS-W ndows 95
/1 Conpiler : Visual C++ 5.0

/] Date : 01/09/99

/1

/1 Description :

/1

/1l - Header file for Matrix.cpp

/1l - Executes matrix operations

/1

/1 Inputs : None

/1

/] CQutputs : None

/1

/1 Process : None

/1

/1 Assunption : None

/1

/1 Warnings during conpliation : None

//*******************************************************************

//*******************************************************************

#ifndef __ MATRIX H__

#define __ MATRIX H

#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>
#i ncl ude "quaternion. h"

class Matri x{

/1l overl oaded operator<<
friend ostream &operator<<(ostream & const Matrix &);

publi c:

/1 default constructor
Matri x (char * mmame="Matrix",int nrow = 4,int ncol = 4);

//conversition constructor froma two di nensi onal double array
Matrix (char * mmane,int arrayRow, int arrayCol, double **);

/] destructor
~Mat ri x();

/1 copy constructor
Matrix (const Matrix &);
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// matrix invertion
Matrix invert();

/'l transpose
voi d transpose (Matrix & const;

/1 Matrix product
Matri x operator*(const Matrix & const;

/1 Matrix assignment
Matri x &operator=(const Matrix &);

// Matrix product and assi ghment
Matri x &operator*=(const Matrix &);

/] creates a unit matrix
Matrix unitMatrix(int);

/1l inserta a quaternion in a row
voi d insert RowQuat erni on(Quaternion & a, Quaternion & b, int);

/'l inserta a quaternion in a co
voi d insertCol Quaternion(Quaternion & d, Quaternion & c, int);

/1l return row no
int getRow(){return row}

/1 return col no
int getCol (){return col;}

// returns an elenent fromthe matrix
double getElement(int i, int j){ return matrix[i][j];}

private:

/1 the name of the Matrix
char * nane;

/] the elenments of a Matrix
double ** matri x;

//row and col um
int row, col;

b
#endi f

/Il end of file Matrix.h
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J. MATRIX.CPP

//*******************************************************************

//*******************************************************************

/1
Il File . Matrix.cpp
// Author : ildeniz DUVAN

/1 Project Name : Matrix Attitude Estimation Filter
/1 Operating Environment : MS-W ndows 95
/1 Conpiler : Visual C++ 5.0

/] Date : 01/09/99

/1

/1 Description :

/1

/1 - Source file for Matrix

/1l - Executes matrix operations

/1

/1 Inputs : None

/1

/] CQutputs : None

/1

/1 Process : None

/1

/1 Assunption : None

/1

/1 Warnings during conpliation : None

//*******************************************************************

//*******************************************************************

#i ncl ude <mat h. h>

#i ncl ude <string. h>

#i ncl ude <assert. h>

#i nclude "Matrix. h"

#i ncl ude "quaternion. h"

R e I
/'l Function: Mat ri x()

/! Return Val ue: None

/] Paranmeters: manme - nanme of the matrix

/1 nT ow - row no

/1 ncol - col no

/1 Description: Default constructor

A i i i

Matrix::Matrix (char* mane,int nrow, int ncol)
:row(nrow), col (ncol)
{

int length = strlen(mane);

name = new char[l ength+1];

assert (name !'= 0);

st rcpy(nanme, mane) ;

matri x = new double *[row ;
assert (matrix !=0);
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for (int x = 0; x<row, X++){
matri x[ x] = new double [col];
assert (matrix[x] !=0);

}

for (int i = 0;i<rowi++){
for (int j = 0;j<col;j++){

matrix[i][j] = 0.0;

}

}//end Constructor

e e T
/1 Function: ~Mat ri x()

/1 Return Value: None

/'l Parameters: None

/1 Description: Destructor

e LR
Matrix::~Matrix()

{

delete [] nane;

for (int x=0;x<row, x++){
del ete matri x[x];

}

delete [] matrix;
}//end destructor

e R T
/1 Function: Matrix(Matrix &)

/!l Return Value: None

/1l Parameters: MAT - Matrix to copy

/1 Description: Copy constructor

L e e
Matri x:: Matrix(const Matrix &MAT)

{

int length = strlen(MAT. nane);

nane = new char[| ength+1];

assert(name !'= 0);

strcpy(nanme, MAT. nane) ;

matri x = new doubl e *[ MAT.row ;

assert (matrix !=0);

for (int x = 0; X<MAT.row, x++){
matri x[ x] = new doubl e [ MAT. col ];
assert (matrix[x] !=0);

}

r ow=MAT. r ow,

col =MAT. col ;

for (int i = 0;i<MAT.row, i ++){
for (int j = 0;j<MAT.col;j++){

matrix[i][j] = MAT.matrix[i][j];

}

}

}// end copy constructor
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/1 Function: Matrix()

/1 Return Value: None

/'l Paraneters: mamnme - name of the matrix

/1 arow - row no

/1 acol - col no

/1 double []J[] - a - two dinesional double array

/1 Description: Constructs a matrix froma two dinmensional array
e LR
Matrix::Matrix (char * mmane , int arow, int acol,double ** a)

{

int length = strlen(mane);

name = new char[l engt h+1];

assert (name != 0);

strcpy(nanme, mane) ;

matri x = new double *[arow];

assert (matrix !=0);

for (int x = 0; x<arow, x++)({
matri x[ x] = new doubl e [acol];
assert (matrix[x] !=0);

}

row = arow,

col = acol;

for (int i = 0;i<rowi++){

for (int j = 0;j<col;j++){
} matrix[i][j] = a[i]l[jl];

}
Y}/ end Matrix()

L e i
/1 Function: operat or*()

/1 Return Value: Matrix

/1l Paraneters: MAT - Matrix & - Matrix to multiply

/1 Description: Cal cul ates the Matrix product

e R T
Matrix Matrix::operator*(const Matrix &WAT) const

{

Matri x dest("Product", row , MAT.col);
doubl e sum = 0. Of ;
for (int i=0;i<rowi++){
for (int j=0;j<MAT.col;j++){
for (int k=0; k<MAT. row;, k++){
sum += matrix[i][k] * MAT.matrix[Kk][j];

}
dest.matrix[i][j]=sum
sum = 0. 0;

}

return(dest);
}//end operator*
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/1 Function: oper at or =()

/!l Return Value: Matrix &

/'l Paraneters: MAT - Matrix &

/1 Description: Assigns the MAT to current object
e e
Matrix & Matrix::operator=(const Matrix &MAT)

{

[*if (&VAT !'= this){

delete [] nane;

int length = strlen(MAT. nane);
nane = new char[| ength+1];

assert(name !'= 0);

strcpy(nanme, MAT. nane) ;

}

*/

/1 1 let self assingnment

if ((rowi=MAT.row) || (col !'= MAT.col)){
cout <<"Error in matrix assignnent ";

} else {

delete [] nane;
int length = strl en( MAT. nane) ;
name = new char[l engt h+1];
assert(name != 0);
strcpy(nanme, MAT. nane) ;

for (int i = 0;i<MAT.row; i ++){
for (int j = 0;j<MAT.col;j++){
matrix[i][j] = MAT.matrix[i][j];
}

}
}
return (*this);
}// end operator=

e LR
/1 Function: uni tMatri x()

/1 Return Value: Matrix

[l Paraneters: rowdrCol - int - square matrix index

/'l Description: Creates a unit matrix
e e
Matrix Matrix::unitMatrix (int rowO Col)

{

Matrix Unit("unit", rowOrCol , rowOrCol);

for (int i =0 ; i<Unit.row; i++){
Unit.matrix[i][i] = 1.0;

return (Unit);

}// end unitMatrix()
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/1 Function: i nvert ()

/!l Return Value: Matrix

/'l Paraneters: None

/1 Description: Cal cul ates the matrix inversion
e e
Matrix Matrix::invert()

{

double nultiplier=0.0, divider =0.0;
Matrix myUnit=myUnit.unitMatrix(row;

/'l square matrix check
if (row == col){

/linverting the matrix
for (int j=0; j<col;j++){
for (int i=0; i<rowi++){
i r= )4
multiplier = -matrix[i][j]/matrix[jI[j];
for (int k=0; k<col ; k++){
matrix[i]J[K] += (rmultiplier *
matrix [j1[k]);
myUnit.matrix[i][k] += (multiplier
*myUnit.matrix[j][k]);

}
}
}
}
/] final division to make our matrix a unit matrix
for (int i =0 ; i<row; i++){
divider = matrix[i][i];
if (divider !'= 0.0){
matrix [i][i] /= matrix [i][i];
for (int k=0; k<myUnit.row k++){
nyUnit. matrix [i][K] /= divider
}
}
}
} else {

cout << "Error : Matrix nust be a square matrix "<<endl

}
return (myUnit);

Y}/ !/ end unitMatrix()
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/1 Function: operat or*=()

/!l Return Value: Matrix

/'l Paraneters: MAT - Matrix &

/1 Description: Cal cul ates the product and assigns the result to
/1 current object

L e i
Matrix & Matrix::operator*=(const Matrix &VAT)

{

*this = *this * MAT;
return (*this);
}// end operator*=

R e e
/1 Function: transpose()

/1 Return Value: None

/1l Paraneters: tr - Matrix

/1 Description: Fi nds the transpose of a matrix

e e e

void Matrix::transpose(Matrix & tr) const

if ((row==1tr.col) && (col == tr.row)){
for (int i=0;i<rowi++){
for (int j=0;j<col;j++){
tr.matrix[(j][i] = matrix[i][j];
}

}
}
return;
}// end transpose()

L e e
/1 Function: i nsert RowQuat er ni on()
/1 Return Value: None
/1l Paraneters: QL , @ - Quaternions
/1 rowNo - int - rowno to insert
/1 Description: Takes two quaternions and inserts themin a row by
/1 ignoring the w val ues of the quaternions
e e
void Matrix::insertRowQuaternion (Quaternion & QL, Quaternion & @,

i nt rowNo)
{

if ((row >= rowNo) && (col==6)){

matri x[rowNo] [0] = QL. get X();
matri x[rowNo][1] = QLl.getY();
matri x[rowNo] [2] = QLl.getZ();
matri x[rowNo][3] = Q. get X();
matri x[rowNo][4] = Q.getY();
matri x[rowNo] [ 5] = @.getZ();

}

return;

}// end insertRowQuat erni on()
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/1 Function: i nsert Col Quat erni on()
/1 Return Value: None
/'l Paraneters: Ql , Q@ - Quaternions
/1 colNo - int - coloum no to insert
/1 Description: Takes two quaternions and inserts themin a col oumm
/1 by ignoring the w values of the quaternions
L e e
void Matrix::insertCol Quaternion ( Quaternion & Ql, Quaternion & @2,
i nt col No)
{
if ((col >= col No) && (row==6)){
matri x[ O] [ col No] = QL. get X();
matri x[ 1] [col No] = QLl.getY();
matri x[ 2] [col No] = QL.getZ();
matri x[ 3][col No] = Q. getX();
matri x[4][col No] = @.getY();
matri x[ 5] [ col No] = @.getZ();
}
return,;
}//end insert Col Quaternion()
L e i
/1 Function: (friend) operator<<()
/1 Return Value: ostream object
/1l Paraneters: out put - ostream obj ect
/1 g - Matrix to print
/1 Description: Prints the Matrix in a form should be witten out
/1 of class
e e T

ostream &oper at or <<(ostream &out put, const Matrix &Qq)

{

out put <<'['<<qg.nane<<']'<<" "<<q.row<"x"<<q. col <<endl ;;

for (int k=0;k<q.row k++) {
for (int n=O; nkq. col ; mt+) {
out put <<" "<<g.matrix[K][m;
}

out put <<endl ;

}

return output;
}// end operator<<

/lend of file Matrix.cpp
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K. QUATERNION.H

//*******************************************************************

//*******************************************************************

/1
/Il File . Quaternion.h
// Author : ildeniz DUVAN

/1 Project Name : Quaternion Attitude Estimation Filter
/1 Operating Environment : MS-W ndows 95
/1 Conpiler : Visual C++ 5.0

/] Date : 01/09/99

/1

/1 Description :

/1

/1l - Header file for quaternion.cpp

/1l - Executes Qauternion operations

/1

/1 Inputs : None

/1

/] CQutputs : None

/1

/1 Process : None

/1

/1 Assunption : None

/1

/1 Warnings during conpliation : None

//*******************************************************************

//*******************************************************************

#i fndef __QUATERNI ON_H__
#define __QUATERNION_H__

#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>

#define M_PI 3. 14159265358979323846

cl ass Quaternion{

/1 overl oaded operator*
friend Quaternion operator*(const doubl e, Quaternion &);

/1 overl oaded operator<<
friend ostream &operat or<<(ostream & const Quaterni on &)

publi c:
/1 default constructor
Quat ernion (char * gnane="Quaternion", doubl e ww=0.0

doubl e xx=0. 0, doubl e yy=0. 0, doubl e zz=0.0);

/'l destructor
~Quat ernion();
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/1 copy constructor
Quat erni on (const Quaternion &);

/'l get data nenbers
doubl e getW);
doubl e get X();
doubl e get Y();
doubl e get Z();

/1 quat ernion product
Quat er ni on operator*(const Quaternion & const;

/'l overwriting operator*() to nmake scalar nultiplications
Quat er ni on operator*(const double);

/1 Quaternion addition
Quat er ni on operator+(const Quaternion & const;

/1 Quaternion substraction
Quat er ni on operator-(const Quaternion & const;

/1 quat ernion assignment
Quat er ni on &operat or=(const Quaternion &);

/1 quaternion product and assi gnnment
Quat er ni on &operat or*=(const Quaternion &)

/1 quaternion inverse (conjugate)
Quat er ni on operator-() const;

//sets the quaternion
voi d set Quat erni on(doubl e , double , double , double);

/lconverts to Eul er Angles
Quat er ni on t oEul er Angl es() ;

/1l rotate a quaternion about a 3D vector (w=0)
Quat ernion rotati on(const Quaternion &);

/'l converts to body coordi nates
Quat er ni on toBody(const Quaternion &);

/1 dot product
doubl e dot Product (const Quaternion &);

/1 quaternion to axis angles
Quat er ni on t oAxi sAngl es();

/'l rotation angles(w=0) to quaternion
Quat erni on toQuat erni on();

/1 normalizes a quaternion
void normalize();
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/1 calculates partial derivative
Quat erni on partial Derivative(const Quaternion &,
const Quaternion & const Quaternion &) const;
private:

/1 the name of the quaternion
char * nane;

/1 the elenments of a quaternion
double w, x,vy, z;

b
#endi f

/1l end of file Quaternion.h
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L.

/1
11
/1
11
11
11
11
11
11
/1
11
/1
11
11
11
11
11
11
/1
11
/1
11
11
11
11
11

#i
#i
#i
#i

QUATERNION.CPP

EE R R R I R R I R I R I R R S R I R I R

EE R R R I I I R R I O R I S I R I O I R

File . Quaternion.cpp
Aut hor : il deniz DUMAN
Project Name : Quaternion Attitude Estimation Filter

Operating Environment : MS-W ndows 95
Conpiler : Visual C++ 5.0

Date : 01/09/99

Description :

- Source file for quaternion
- Executes Qauternion operations

I nputs : None
Qut puts : None
Process : None
Assunption : None

War ni ngs during conpliation : None

LR R R R EEE SRR EREEEEEEEREEEREEEEREEEREEEREESEREREEEREREEREEEERIEEEEE SRR SRR SRR SRR

LR R R R R R R R R R R R R R EE R R R EREE RS RE R E R R R

ncl ude <mat h. h>

ncl ude <string. h>

ncl ude <assert. h>

ncl ude "Quaternion. h"

Functi on: Quat er ni on()

Return Val ue: None

Par anet ers: None

Description: Default constructor

Quat erni on: : Quat erni on (char* gname, doubl e ww, doubl e xx, doubl e yy,

doubl e zz)

%W(VWV),X(XX),V(W),Z(ZZ)

H

int length = strlen(gnane);
name = new char[l engt h+1];
assert (name != 0);
strcpy(nane, gnane) ;

/ end Constructor
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/1 Function: ~Quat er ni on()

/1 Return Value: None

/'l Paraneters: None

/1 Description: Destructor
e e
Quat er ni on: : ~Quat er ni on()

{

[l cout <<"deleting "<<*this<<endl
delete [] nane;
}//end destructor

R e e
/1 Function: Quat er ni on(Quat erni on &)

/1 Return Value: None

/|l Paraneters: Quat er ni on

/1 Description: Copy constructor

e e
Quat er ni on: : Quat er ni on(const Quat er ni on &QUAT1)

{

int length = strlen( QUATL. nane) ;

name = new char[l engt h+1];

assert(name != 0);
strcpy(nanme, QUATL. nane) ;
w = QUAT1. w,

X = QUATL. x;

y = QUATL.y;

z = QUATL. z;

}// end copy constructor

R e e
/1 Function: set Quat er ni on()

/1 Return Value: None

/1l Paraneters: double a,b,c,d - values to set

/1 Description: Sets the quaternion with new val ues

e I e

voi d Quaternion::setQaternion (double a, double b, double c, double d)

{

a;
b;
C

TAE

z=d;
return,;
}/ ! end set Quaternion()

/1 get functions returns the data nenbers
doubl e Quaternion::getW){return w;}
doubl e Quaternion::getX(){return x;}
doubl e Quaternion::getY(){return vy;}
doubl e Quaternion::getZ(){return z;}
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/1 Function: operat or*()

/1l Return Value: Quaternion

/'l Paraneters: QUAT - Quaternion & - First rotation

/1 Description: Cal cul ates the quaterni on product
e e

Quat er ni on Quat erni on: : operat or*(const Quaterni on &UAT) const

{

Quat er ni on dest (" Quaterni on Product");

dest.w = QUAT.w * w - QUAT.x * x - QUAT.y * v - QUAT.z * z;
dest.x = QUAT.w * x + QUAT.x * w - QUAT.y * z + QUAT.z * vy;
dest.y = QUAT.w * y + QUAT.y * w - QUAT.z * x + QUAT.x * z;
dest.z = QUAT.w * z + QUAT.z * w - QUAT.x * v + QUAT.y * X;
return(dest);
}//end operator*
L e e LR
/1 Function: oper at or *(doubl e) overwriten
/1l Return Value: Quaternion
/'l Paraneters: NUM - double - a scalar to multiply
/1 Description: Cal cul ates the scal ar product, double nust be on
/1 the right
L e i
Quat er ni on Quat erni on: : oper ator*(const doubl e NUM
{
w=NUM* w;
X=NUM X;
y=NUM"y;
z=NUMz;
return (*this);
}// end operator*(double)
e LR
/'l Function: oper at or +
/1 Return Value: Quaternion
/'l Paraneters: QUAT - Quaternion - a quaternion to add
/'l Description: Cal cul ates the quaternion addition
e e

Quat er ni on Quat erni on: : oper at or +(const Quat erni on &UAT) const

{
Quat er ni on add("addition");

add. w = w + QUAT. w,

add. x = x + QUAT. x;
add.y =y + QUAT.y;
add.z = z + QUAT. z;

return (add);
}// end operator+()

144



/1 Function: oper at or -

/1l Return Value: Quaternion

/'l Paraneters: QUAT - Quaternion - a quaternion to substract

/1 Description: Cal cul ates the quaternion substraction
e e

Quat er ni on Quat erni on: : operator-(const Quaterni on &UAT) const

{

Quat er ni on add("substraction");
add.w = w - QUAT. w;

add. x = x - QUAT. x;
add.y =y - QUAT.y;
add.z = z - QUAT. z;

return (add);
}// end operator-()

L e e LR
/1 Function: oper at or =()

/!l Return Value: Quaternion &

/'l Paraneters: QUAT2 - Quaternion &

/1 Description: Assigns the QUAT2 to current object

Quat erni on & Quat erni on: : operat or=(const Quaterni on &UAT2)
{

[*if (&QUAT2 I'= this){

delete [] nane;

int length = strl en(QUAT2. nane) ;

nane = new char[| ength+1];

assert(name !'= 0);

strcpy(nanme, QUAT2. nane) ;

| let self assingnent */
w = QUAT2. w,
X = QUAT2. x;
y = QUATZ2.y;
z = QUAT2. z;

return (*this);
}//end operator=

e LR
/1 Function: operat or*=()

/1 Return Value: Quaternion

/'l Paraneters: QUAT3 - Quaternion &

/1 Description: Cal cul ates the product and assigns the result to
/1 current object
e e

Quat erni on & Quat erni on: : operat or*=(const Quaterni on &QUAT3)

{
*this = *this * QUATS;
return (*this);

}// end operator*=
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/1 Function: operator- ()

/1l Return Value: Quaternion

/'l Paraneters: None

/1 Description: Cal cul ates the inverse (conjugate) quaternion
e e
Quat erni on Quat erni on::operator-() const

{

Quat erni on tenp("Conj ugate");
tenp.w = w,

tenp. x = -X;
temp.y = -y;
tenp.z = -z;

return (tenp);
}// end operator-

e LR
/1 Function: rotation()

/1 Return Value: Quaternion

/'l Paraneters: QUAT4 - Quaternion & - vector to rotate around

/'l Description: Cal cul ates the rotation quaternion
e e

Quat erni on Quaternion::rotation(const Quaterni on &UAT4)
{

Quat ernion tenp("Rotation");

temp = *this * ( QUAT4 * (-(*this)));

return (tenp);
}//end Rotation()

B e i
/1 Function: t oBody()

// Return Value: Quaternion

/|l Paraneters: QUAT4 - Quaternion & - vector to convert to body
/1 coordi nates

/1 Description: Converts into the body coordinates
e e

Quat er ni on Quat erni on: :toBody(const Quaterni on &QUAT)

{
Quaternion tenp("to Body");

tenp = ((-(*this)) * (QUAT * (*this)));
return (tenp);
}//end Rotation()
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/1 Function: dot Product ()

/1 Return Value: double

/'l Paraneters: QUAT4 - Quaternion &

/1 Description: Cal cul ates the dot product of quaternions
e e

doubl e Quat erni on:: dot Product (const Quat erni on &QUAT5)
{
doubl e dot pr oduct;
dot product = (w * QUAT5.w) + (x * QUAT5.x) + (y * QUAT5.y) +
(z * QUATS. z);

return (dotproduct);
} //end dot Product ()

R e e
/'l Function: normal i ze()

/1 Return Value: None

[l Paraneters: None

/1 Description: Normal i zes the quaternion
e L R
voi d Quaternion::normalize()

{

doubl e nor mal ;
normal = (x * x) + (y *y) +(z* z) +(w* w,;

X = x [/ sqrt(normal);
y =y [/ sqrt(normal);
z =z /| sqgrt(normal);
w=w/ sqgrt (normal);

return;
}//end normalize()

L e e
/1 Function: t 0Axi sAngl es()

/1 Return Value: Quaternion

[l Paraneters: None

/1 Description: Cal cul ates the axis angles of quaternion, results
/1 must be in gl Rotatef()
e e
Quat er ni on Quat erni on: : t oAxi sAngl es()

{

Quat erni on axi sAngle("To Axis Angle ");

doubl e scal ar Number, t enp;
temp = acos(w) * 2.0;
scal ar Nunber = sin(tenp / 2.0)
axi sAngle.x = x [/ scal ar Nunber;
/1 aligning the axes
axi sAngle.y -1 * z | scal arNunber;
axi sAngl e. z y /| scal ar Nunber
axi sAngle.w = (temp * (360 / 2.0)) / MPI;
return (axi sAngle);
}//end toAxi sAngl es()

147



/1 Function: t oQuat er ni on()

/1l Return Value: Quaternion

/'l Paraneters: None

/1 Description: Cal cul ates the quaternion value of three rotations
e e
Quat er ni on Quat erni on: : t oQuat er ni on()

{

/lcurrent object is a 3D vector with rotation angles at x,y,z
doubl e radX rady, radz, t enpx, t enpy, t enpz;

doubl e cosx, cosy, cosz, si nx, si ny, sinz, cosc, coss, si nc, sins;
Quat erni on quat ("Eul er To Quaternion");

/1 convert angles to radians

radX = (x * MPlI) / (360.0/ 2.0);
radY = (y * MPlI) / (360.0/ 2.0);
radz = (z * MPlI) / (360.0/ 2.0);
/1 half angles

tempx = radX * 0.5;
tempy = radyY * 0.5;
tempz = radZ * 0.5;
cosx = cos(tenpx);
cosy = cos(tenpy);
cosz = cos(tenpz);
sinx = sin(tenpx);
siny = sin(tenpy);
sinz = sin(tenpz);
COSC = CcOSX * co0sz;
COSS = COSX * sinz;
sinc = sinx * cosz;
sins = sinx * sinz;
quat.x = (cosy * sinc) - (siny * coss);
quat.y = (cosy * sins) + (siny * cosc);
quat.z = (cosy * coss) - (siny * sinc);
quat.w = (cosy * cosc) + (siny * sins);
quat. normal i ze();
return(quat);
}// end toQuaternion
L e i
/1 Function: (friend) operator*(doubl e, Quaternion & overwiten
// Return Value: Quaternion
/1l Paraneters: NUM - double - a scalar to multiply
/1 Description: Cal cul ates the scal ar product
e R T

Quat er ni on operator*(const double NUM Quaterni on & quat)
{

quat . w=NUMr quat . w,

quat . x=NUM quat . x;

quat . y=NUM quat . vy,

quat . z=NUMr quat . z;

return (quat);
}// end operator*(doubl e, Quaterni on &)

148



11
11
/1
11
11

Functi on: t oEul er Angl es()

Return Val ue: Quaternion

Par anet er s: None

Description: Converts quaternion into euler angles , this
conversion is inherently ill-defined

Quat er ni on Quat erni on: :toEul er Angl es()

{

H

/1
/1
11
11
11
11
11
11

Quaternion euler("Quat to euler");
doubl e sint, cost, si nv, cosv, si nf, cosf, ex, ey, ez;

si nt (2*wry) - (2*x*2);
cost sqrt(1- pow(sint,2));
if (cost I'=0.0){

sinv = ((2*y*z)+(2*w*x))/cost;
cosv = (1-(2*x*x)-(2*y*y))/cost;
sinf = (1-(2*x*x)-(2*y*y))/cost;
cosf = (1-(2*y*y)-(2*z*z))/cost;
el se {
sinv = (2*wx)-(2*y*z);
cosv = 1-(2*x*x)-(2*z*z);
sinf = 0.0;
cosf = 1.0;
}
ex = atan2(sinv, cosv);
ey = atan2(sint,cost);
ez = atan2(sinf,cosf); //range -pi +p

ex *= 180.0/ M PI
ey *= 180. 0/ M _PI
ez *= 180. 0/ M_PI

eul er.setQuaterni on(0.0, ex,ey,ez);
return euler;

/end toEul er Angl es()
Functi on: partial Derivative()
Return Value: Quaternion
Par anet ers: M- vector, as in the X matrix
HAT - g- hat
DER - partial derivative of quaternion
I NVDER - inverse partial derivative of quaternion
Descri ption: Calcul ates the partial derivatives for X Matrix,

special to filter

Quat erni on Quaternion::partial Derivative(const Quaternion & QHAT,

{

const Quaternion & DER, const Quaternion & | NVDER) const

return ((INVDER*((*this) * QHAT))+((-QHAT)*((*this)*DER)));

}// end partial Derivative()
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/1 Function: (friend) operator<<()

/1l Return Value: ostream object

/'l Paraneters: out put - ostream object

/1 g - quaternion to print

/1 Description: Prints the quaternion in a form should be witten

/1 out of class

I R i R
ostream &oper at or <<(ostream &out put, const Quaternion &Qq)

{

/> out put <<g. name<<" w= "<<q.w

<<" x= "<<(g. X
<<" y= "<<q.y
<<" z= "<<q.z;*/
out put << g.w <<" "<<gg. x<<" "<<q.y<<" "<<q.z<<"
return output;
}// end operator<<

/lend of file Quaternion.cpp
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M.

UTIL.H

//*******************************************************************

//*******************************************************************

/1
11
11
11
11
11
11
/1
11
/1
11
11
11
11
11
11
/1
11
/1
11
11

File : Util.h
Aut hor : il deniz DUVAN
Project Name : Quaternion Attitude Estimation Filter

Operating Environment : MS-W ndows 95
Conpiler : Visual C++ 5.0

Date : 01/09/99

Description :

- Header file for Uilities

I nputs : None

Qut puts : None

Process : None

Assunption : None

War ni ngs during conpliation : None

//*******************************************************************

//*******************************************************************

#ifndef _ UTIL H
#define _ UTIL_ H

#i ncl ude <i ostream h>
#i ncl ude <fstream h>

11

i nt

opens a file to read
openFile (ifstream & ,char * );

/'l opens a file to wite

int witeFile (ofstream & ,char * );
#endi f

/1 end of file Util.h
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N.

UTIL.CPP

//*******************************************************************

//*******************************************************************

/1
11
11
11
11
11
11
/1
11
/1
11
11
11
11
11
11
/1
11
/1
11
11
11
11
11

#i
#i
#i
#i

File : Util.cpp
Aut hor : il deniz DUVAN
Project Name : Quaternion Attitude Estimation Filter

Operating Environment : MS-W ndows 95
Conpiler : Visual C++ 5.0

Date : 01/09/99

Description :

- Source file for Utilities
- Opens a file to wite and read

I nputs : None
Qut puts : None
Process : None
Assunption : None

War ni ngs during conpliation : None

LR R R R EEE SRR EREEEEEEEREEEREEEEREEEREEEREESEREREEEREREEREEEERIEEEEE SRR SRR SRR SRR

LR R R R R R R R R R R R R R EE R R R EREE RS RE R E R R R

ncl ude <i ostream h>
ncl ude <fstream h>
ncl ude <i onmani p. h>
ncl ude "util.h"

Functi on: openFi l e()

Return Val ue: None

Par anet ers: inDataFile - & ifstream- ifstream object
filename - char * - file name to open

Description: Opens a file to read

int openFile (ifstream & inDataFile ,char * fil eNane)

{

}/

int error = 0;

i nDat aFi |l e. open (fileName , io0s::in);
cout <<"Reading "<<fil eNane<<" for configuration settings\n";

if (!'inDataFile){
cout <<"File "<<fil eNanme<<" not found\n";
error = 1,

}
return error;
/ end openFil e()
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/1 Function: writeFile()

/1 Return Value: None

/'l Paraneters: inDataFile - & ifstream- ifstream object

/1 filename - char * - file name to open

/1 Description: Opens a file to wite

L e i

int witeFile(ofstream & outDataFile, char *fil eNane)

{

int error = 0;

out Dat aFi | e. open (fileNane , ios::out);
cout <<fileNane<<" opened to wite\n";

if ('outDataFile){
cout <<"File "<<fil eNane<<" not found\n";
error = 1;

}

return error;
Y}/ end witeFile()

/1end of file util.cpp
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O. TEST.CPP

//*******************************************************************

//*******************************************************************

/1
Il File . test.cpp
// Author : ildeniz DUVAN

/1 Project Name : Quaternion Attitude Estimation Filter
/1 Operating Environment : MS-W ndows 95

/1 Conpiler : Visual C++ 5.0

/] Date : 01/09/99

/1

/1 Description :

/1

/1 - Source file for test

[l - Sanmple driver file for the filter

/1

/1 Inputs : None

/1

/] CQutputs : None

/1

/1 Process : None

/1

/1 Assunption : None

/1

/1 Warnings during conpliation : None
/1

/1 Note : nidag32.lib, nidag.h and nidaqcns.h nust be added to the
/1 project file

//*******************************************************************

//*******************************************************************

#i ncl ude <math. h>
#i ncl ude "qaef.h"
#i ncl ude "quaternion. h"
#i ncl ude "util.h"

int main(){
/1 file nane to | og data
char * fname;

fname = new char[15];

// deltat
doubl e dt =0. 0;

/'l step counter
int step =1;

/] streamto wite file
of streamresul t;
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/1l quat erni ons
Quat er ni on drawQuat ("d", 0.0);
Quat erni on gRotation("q", 0.0);

[l filter
Qaef nyQaef (1, 40, 3);

cerr<<"Enter file name, with .dat : ";
ci n>>f nane;
writeFile(result, fnane);

[l start filter and get delta t
dt = nyQaef.start();

whi l e(true){

/1l get estimated result
drawQuat = nyQaef. get Result();

/1 convert into angles
gRot ation = drawQuat.toAxi sAngl es();

/lcerr<<qRotation.getW)<<" ";

/1 wite results into file
resul t <<(step*dt)<<" "<<qgRotati on<<endl;

st ep++;

}

/'l stop the filter
my Qaef . stop();

return (0);
} /1 end main()

/1 end of file test.cpp
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